📄 smartsopc_flash_programmer.v
字号:
cpu_0_instruction_master_readdatavalid,
cpu_0_instruction_master_waitrequest
);
output [ 23: 0] cpu_0_instruction_master_address_to_slave;
output [ 1: 0] cpu_0_instruction_master_dbs_address;
output [ 1: 0] cpu_0_instruction_master_latency_counter;
output [ 31: 0] cpu_0_instruction_master_readdata;
output cpu_0_instruction_master_readdatavalid;
output cpu_0_instruction_master_waitrequest;
input cfi_flash_0_s1_wait_counter_eq_0;
input cfi_flash_0_s1_wait_counter_eq_1;
input clk;
input [ 23: 0] cpu_0_instruction_master_address;
input cpu_0_instruction_master_granted_cfi_flash_0_s1;
input cpu_0_instruction_master_granted_data_RAM_s1;
input cpu_0_instruction_master_granted_firmware_ROM_s1;
input cpu_0_instruction_master_granted_payload_buffer_s1;
input cpu_0_instruction_master_qualified_request_cfi_flash_0_s1;
input cpu_0_instruction_master_qualified_request_data_RAM_s1;
input cpu_0_instruction_master_qualified_request_firmware_ROM_s1;
input cpu_0_instruction_master_qualified_request_payload_buffer_s1;
input cpu_0_instruction_master_read;
input cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1;
input cpu_0_instruction_master_read_data_valid_data_RAM_s1;
input cpu_0_instruction_master_read_data_valid_firmware_ROM_s1;
input cpu_0_instruction_master_read_data_valid_payload_buffer_s1;
input cpu_0_instruction_master_requests_cfi_flash_0_s1;
input cpu_0_instruction_master_requests_data_RAM_s1;
input cpu_0_instruction_master_requests_firmware_ROM_s1;
input cpu_0_instruction_master_requests_payload_buffer_s1;
input d1_data_RAM_s1_end_xfer;
input d1_firmware_ROM_s1_end_xfer;
input d1_payload_buffer_s1_end_xfer;
input d1_tri_state_bridge_0_avalon_slave_end_xfer;
input [ 31: 0] data_RAM_s1_readdata_from_sa;
input [ 31: 0] firmware_ROM_s1_readdata_from_sa;
input [ 15: 0] incoming_tri_state_bridge_0_data;
input [ 15: 0] payload_buffer_s1_readdata_from_sa;
input reset_n;
reg active_and_waiting_last_time;
reg [ 23: 0] cpu_0_instruction_master_address_last_time;
wire [ 23: 0] cpu_0_instruction_master_address_to_slave;
reg [ 1: 0] cpu_0_instruction_master_dbs_address;
wire [ 1: 0] cpu_0_instruction_master_dbs_increment;
reg [ 1: 0] cpu_0_instruction_master_dbs_rdv_counter;
wire [ 1: 0] cpu_0_instruction_master_dbs_rdv_counter_inc;
wire cpu_0_instruction_master_is_granted_some_slave;
reg [ 1: 0] cpu_0_instruction_master_latency_counter;
wire [ 1: 0] cpu_0_instruction_master_next_dbs_rdv_counter;
reg cpu_0_instruction_master_read_but_no_slave_selected;
reg cpu_0_instruction_master_read_last_time;
wire [ 31: 0] cpu_0_instruction_master_readdata;
wire cpu_0_instruction_master_readdatavalid;
wire cpu_0_instruction_master_run;
wire cpu_0_instruction_master_waitrequest;
wire dbs_count_enable;
wire dbs_counter_overflow;
reg [ 15: 0] dbs_latent_16_reg_segment_0;
wire dbs_rdv_count_enable;
wire dbs_rdv_counter_overflow;
wire dummy_sink;
wire [ 1: 0] latency_load_value;
wire [ 1: 0] next_dbs_address;
wire [ 1: 0] p1_cpu_0_instruction_master_latency_counter;
wire [ 15: 0] p1_dbs_latent_16_reg_segment_0;
wire pre_dbs_count_enable;
wire pre_flush_cpu_0_instruction_master_readdatavalid;
wire r_0;
wire r_1;
//r_0 master_run cascaded wait assignment, which is an e_assign
assign r_0 = 1 & (cpu_0_instruction_master_qualified_request_data_RAM_s1 | ~cpu_0_instruction_master_requests_data_RAM_s1) & (cpu_0_instruction_master_granted_data_RAM_s1 | ~cpu_0_instruction_master_qualified_request_data_RAM_s1) & ((~cpu_0_instruction_master_qualified_request_data_RAM_s1 | ~cpu_0_instruction_master_read | (1 & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_firmware_ROM_s1 | ~cpu_0_instruction_master_requests_firmware_ROM_s1) & (cpu_0_instruction_master_granted_firmware_ROM_s1 | ~cpu_0_instruction_master_qualified_request_firmware_ROM_s1) & ((~cpu_0_instruction_master_qualified_request_firmware_ROM_s1 | ~cpu_0_instruction_master_read | (1 & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_payload_buffer_s1 | ~cpu_0_instruction_master_requests_payload_buffer_s1);
//cascaded wait assignment, which is an e_assign
assign cpu_0_instruction_master_run = r_0 & r_1;
//r_1 master_run cascaded wait assignment, which is an e_assign
assign r_1 = (cpu_0_instruction_master_granted_payload_buffer_s1 | ~cpu_0_instruction_master_qualified_request_payload_buffer_s1) & ((~cpu_0_instruction_master_qualified_request_payload_buffer_s1 | ~cpu_0_instruction_master_read | (1 & (cpu_0_instruction_master_dbs_address[1]) & cpu_0_instruction_master_read))) & 1 & (cpu_0_instruction_master_qualified_request_cfi_flash_0_s1 | ~cpu_0_instruction_master_requests_cfi_flash_0_s1) & (cpu_0_instruction_master_granted_cfi_flash_0_s1 | ~cpu_0_instruction_master_qualified_request_cfi_flash_0_s1) & ((~cpu_0_instruction_master_qualified_request_cfi_flash_0_s1 | ~cpu_0_instruction_master_read | (1 & ((cfi_flash_0_s1_wait_counter_eq_0 & ~d1_tri_state_bridge_0_avalon_slave_end_xfer)) & (cpu_0_instruction_master_dbs_address[1]) & cpu_0_instruction_master_read)));
//optimize select-logic by passing only those address bits which matter.
assign cpu_0_instruction_master_address_to_slave = {cpu_0_instruction_master_address[23],
2'b0,
cpu_0_instruction_master_address[20 : 0]};
//dummy sink, which is an e_mux
assign dummy_sink = cpu_0_instruction_master_address_to_slave |
cpu_0_instruction_master_requests_data_RAM_s1 |
cpu_0_instruction_master_qualified_request_data_RAM_s1 |
d1_data_RAM_s1_end_xfer |
cpu_0_instruction_master_address_to_slave |
cpu_0_instruction_master_requests_firmware_ROM_s1 |
cpu_0_instruction_master_qualified_request_firmware_ROM_s1 |
d1_firmware_ROM_s1_end_xfer |
cpu_0_instruction_master_address_to_slave |
cpu_0_instruction_master_requests_payload_buffer_s1 |
cpu_0_instruction_master_qualified_request_payload_buffer_s1 |
d1_payload_buffer_s1_end_xfer |
cpu_0_instruction_master_address_to_slave |
cpu_0_instruction_master_requests_cfi_flash_0_s1 |
cpu_0_instruction_master_qualified_request_cfi_flash_0_s1 |
d1_tri_state_bridge_0_avalon_slave_end_xfer |
cfi_flash_0_s1_wait_counter_eq_0;
//cpu_0_instruction_master_read_but_no_slave_selected assignment, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_read_but_no_slave_selected <= 0;
else if (1)
cpu_0_instruction_master_read_but_no_slave_selected <= cpu_0_instruction_master_read & cpu_0_instruction_master_run & ~cpu_0_instruction_master_is_granted_some_slave;
end
//some slave is getting selected, which is an e_mux
assign cpu_0_instruction_master_is_granted_some_slave = cpu_0_instruction_master_granted_data_RAM_s1 |
cpu_0_instruction_master_granted_firmware_ROM_s1 |
cpu_0_instruction_master_granted_payload_buffer_s1 |
cpu_0_instruction_master_granted_cfi_flash_0_s1;
//latent slave read data valids which may be flushed, which is an e_mux
assign pre_flush_cpu_0_instruction_master_readdatavalid = cpu_0_instruction_master_read_data_valid_data_RAM_s1 |
cpu_0_instruction_master_read_data_valid_firmware_ROM_s1 |
(cpu_0_instruction_master_read_data_valid_payload_buffer_s1 & dbs_rdv_counter_overflow) |
(cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1 & dbs_rdv_counter_overflow);
//latent slave read data valid which is not flushed, which is an e_mux
assign cpu_0_instruction_master_readdatavalid = cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid |
cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid |
cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid |
cpu_0_instruction_master_read_but_no_slave_selected |
pre_flush_cpu_0_instruction_master_readdatavalid;
//cpu_0/instruction_master readdata mux, which is an e_mux
assign cpu_0_instruction_master_readdata = ({32 {~cpu_0_instruction_master_read_data_valid_data_RAM_s1}} | data_RAM_s1_readdata_from_sa) &
({32 {~cpu_0_instruction_master_read_data_valid_firmware_ROM_s1}} | firmware_ROM_s1_readdata_from_sa) &
({32 {~cpu_0_instruction_master_read_data_valid_payload_buffer_s1}} | {payload_buffer_s1_readdata_from_sa,
dbs_latent_16_reg_segment_0}) &
({32 {~cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1}} | {incoming_tri_state_bridge_0_data,
dbs_latent_16_reg_segment_0});
//actual waitrequest port, which is an e_assign
assign cpu_0_instruction_master_waitrequest = ~cpu_0_instruction_master_run;
//latent max counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_latency_counter <= 0;
else if (1)
cpu_0_instruction_master_latency_counter <= p1_cpu_0_instruction_master_latency_counter;
end
//latency counter load mux, which is an e_mux
assign p1_cpu_0_instruction_master_latency_counter = ((cpu_0_instruction_master_run & cpu_0_instruction_master_read))? latency_load_value :
(cpu_0_instruction_master_latency_counter)? cpu_0_instruction_master_latency_counter - 1 :
0;
//read latency load values, which is an e_mux
assign latency_load_value = ({2 {cpu_0_instruction_master_requests_data_RAM_s1}} & 1) |
({2 {cpu_0_instruction_master_requests_firmware_ROM_s1}} & 1) |
({2 {cpu_0_instruction_master_requests_payload_buffer_s1}} & 1) |
({2 {cpu_0_instruction_master_requests_cfi_flash_0_s1}} & 2);
//input to latent dbs-16 stored 0, which is an e_mux
assign p1_dbs_latent_16_reg_segment_0 = (cpu_0_instruction_master_read_data_valid_payload_buffer_s1)? payload_buffer_s1_readdata_from_sa :
incoming_tri_state_bridge_0_data;
//dbs register for latent dbs-16 segment 0, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
dbs_latent_16_reg_segment_0 <= 0;
else if (dbs_rdv_count_enable & ((cpu_0_instruction_master_dbs_rdv_counter[1]) == 0))
dbs_latent_16_reg_segment_0 <= p1_dbs_latent_16_reg_segment_0;
end
//dbs count increment, which is an e_mux
assign cpu_0_instruction_master_dbs_increment = (cpu_0_instruction_master_requests_payload_buffer_s1)? 2 :
(cpu_0_instruction_master_requests_cfi_flash_0_s1)? 2 :
0;
//dbs counter overflow, which is an e_assign
assign dbs_counter_overflow = cpu_0_instruction_master_dbs_address[1] & !(next_dbs_address[1]);
//next master address, which is an e_assign
assign next_dbs_address = cpu_0_instruction_master_dbs_address + cpu_0_instruction_master_dbs_increment;
//dbs count enable, which is an e_mux
assign dbs_count_enable = pre_dbs_count_enable;
//dbs counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_dbs_address <= 0;
else if (dbs_count_enable)
cpu_0_instruction_master_dbs_address <= next_dbs_address;
end
//p1 dbs rdv counter, which is an e_assign
assign cpu_0_instruction_master_next_dbs_rdv_counter = cpu_0_instruction_master_dbs_rdv_counter + cpu_0_instruction_master_dbs_rdv_counter_inc;
//cpu_0_instruction_master_rdv_inc_mux, which is an e_mux
assign cpu_0_instruction_master_dbs_rdv_counter_inc = (cpu_0_instruction_master_read_data_valid_payload_buffer_s1)? 2 :
2;
//master any slave rdv, which is an e_mux
assign dbs_rdv_count_enable = cpu_0_instruction_master_read_data_valid_payload_buffer_s1 |
cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1;
//dbs rdv counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -