⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpc.txt

📁 Model Predictive control
💻 TXT
字号:
程序一:跟踪阶跃函数
clear all;
close all;

Ts=0.5;%采样周期0.5s
Tr=1;H=10;%参考轨迹时间常数为1,预测时域优化长度为10
Km=3;Tm=3;%预测模型的参数
beta=exp(-Ts/Tr);
alph=exp(-Ts/Tm);

%对象离散化
sys=tf(3,[3,1]);
dsys=c2d(sys,Ts,'z');
[num,den]=tfdata(dsys,'v');

%预测模型离散化
sysm=tf(Km,[Tm,1]);
dsysm=c2d(sysm,Ts,'z');
[numm,denm]=tfdata(dsysm,'v');

u_1=0;
y_1=0;
ym_1=0;
c=1;%设定值
for k=1:1:100
    time(k)=k*Ts;
   
    
    %经z变换后的离散化对象
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
    %修正后的过程输出值ypav(k)=y(k)
    ypav(k)=y(k)
    
    %控制器输出
    u(k)=((c-ypav(k))*(1-beta^H)+ym(k)*(1-alph^H))/(Km*(1-alph^H));
    
    
    %参数更新
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
figure(1);
plot(time,c,'b',time,y,'r');
axis([0 50 0 1.2])
xlabel('time(s)');ylabel('c,y');
 
程序二:跟踪阶跃加扰动后响应
clear all;
close all;

Ts=0.5;%采样周期0.5s
Tr=1;H=10;%参考轨迹时间常数为1,预测时域优化长度为10
Km=3;Tm=3;%预测模型的参数
beta=exp(-Ts/Tr);
alph=exp(-Ts/Tm);

%对象离散化
sys=tf(3,[3,1]);
dsys=c2d(sys,Ts,'z');
[num,den]=tfdata(dsys,'v');

%预测模型离散化
sysm=tf(Km,[Tm,1]);
dsysm=c2d(sysm,Ts,'z');
[numm,denm]=tfdata(dsysm,'v');

u_1=0;
y_1=0;
ym_1=0;
c=1;%设定值
for k=1:1:40
    time(k)=k*Ts;
   
    
    %经z变换后的离散化对象
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
  
    %控制器输出
    u(k)=((c-y(k))*(1-beta^H)+ym(k)*(1-alph^H))/(Km*(1-alph^H));
    
    
    %参数更新
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
for k=41:1:44
    time(k)=k*Ts;
    c=1.2;
   
    
    %经z变换后的离散化对象
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
  
    %控制器输出
    u(k)=((c-y(k))*(1-beta^H)+ym(k)*(1-alph^H))/(Km*(1-alph^H));
    
    
    %参数更新
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
for k=45:1:140
    time(k)=k*Ts;
    c=1;
    
    %经z变换后的离散化对象
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
  
    %控制器输出
    u(k)=((c-y(k))*(1-beta^H)+ym(k)*(1-alph^H))/(Km*(1-alph^H));
    
    
    %参数更新
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
figure(1);
plot(time,y,'r');
axis([0 70 0 1.2]);
xlabel('time(s)');ylabel('c,y');
    
程序三:跟踪斜坡函数
clear all;
close all;

Ts=0.5;%采样周期0.5s
Tr=1;H1=4;H2=5;%参考轨迹时间常数为1,预测步长H1为4,H2为5
Km=15;Tm=15;%预测模型的参数
beta=exp(-Ts/Tr);
alph=exp(-Ts/Tm);

%对象离散化
sys=tf(5,[5,1]);
dsys=c2d(sys,Ts,'z');
[num,den]=tfdata(dsys,'v');

%预测模型离散化
sysm=tf(Km,[Tm,1]);
dsysm=c2d(sysm,Ts,'z');
[numm,denm]=tfdata(dsysm,'v');

u_1=0;
y_1=0;
ym_1=0;
s1=0;
s2=0;

G1(H1)=Km*(1-alph^H1);
G1(H2)=Km*(1-alph^H2);
for i=1:1:H1-1
    s1=s1+i*alph^(H1-1-i);
end;
for j=1:1:H2-1
    s2=s2+i*alph^(H2-1-i);
end;  
G2(H1)=Km*(1-alph)*s1;
G2(H2)=Km*(1-alph)*s2;

for k=1:1:200
    time(k)=k*Ts;
    c(k)=time(k);%设定值
    %c(k+H1)=(k+H1)*Ts;
    %c(k+H2)=(k+H2)*Ts;
    
    
    %经z变换后的离散化对象
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
    %修正后的过程输出值ypav(k)=y(k)
    %ypav(k)=y(k);
    
    %yr(k+H1)=e(k+H1)-beta^H1*(c(k)-ypav(k))其中的e(k+H1)应该为c(k+H1)
    %即yr(k+H1)=c(k+H1)-beta^H1*(c(k)-ypav(k))
    %X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1)
  
    yr(k+H1)=(k+H1)*Ts-beta^H1*((k+0)*Ts-y(k));
    yr(k+H2)=(k+H2)*Ts-beta^H2*((k+0)*Ts-y(k));
    e(k+H1)=y(k)-ym(k);
    e(k+H2)=y(k)-ym(k);
    X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1);
    X2=yr(k+H2)-alph^H2*ym(k)-e(k+H2);
    
    
    %控制器输出
    u(k)=(G2(H2)*X1-G2(H1)*X2)/(G1(H1)*G2(H2)-G1(H2)*G2(H1));
    
    
    %参数更新
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
figure(1);
plot(time,c,'b-',time,y,'r--');
%axis([0 50 0 1.2])
xlabel('time(s)');ylabel('c,y');
    
程序四:跟踪设定曲线
 clear all;
close all;

Ts=0.5;%采样周期0.5s
Tr=1;H1=4;H2=5;%参考轨迹时间常数为1,预测步长H1为4,H2为5
Km=15;Tm=15;%预测模型的参数
beta=exp(-Ts/Tr);
alph=exp(-Ts/Tm);

%对象离散化
sys=tf(5,[5,1]);
dsys=c2d(sys,Ts,'z');
[num,den]=tfdata(dsys,'v');

%预测模型离散化
sysm=tf(Km,[Tm,1]);
dsysm=c2d(sysm,Ts,'z');
[numm,denm]=tfdata(dsysm,'v');

u_1=0;
y_1=0;
ym_1=0;
s1=0;
s2=0;

G1(H1)=Km*(1-alph^H1);
G1(H2)=Km*(1-alph^H2);
for i=1:1:H1-1
    s1=s1+i*alph^(H1-1-i);
end;
for j=1:1:H2-1
    s2=s2+i*alph^(H2-1-i);
end;  
G2(H1)=Km*(1-alph)*s1;
G2(H2)=Km*(1-alph)*s2;

for k=1:1:80
    time(k)=k*Ts;
    c(k)=time(k);%设定值
    %c(k+H1)=(k+H1)*Ts;
    %c(k+H2)=(k+H2)*Ts;
    
    
    %经z变换后的离散化对象
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
    %修正后的过程输出值ypav(k)=y(k)
    %ypav(k)=y(k);
    
    %yr(k+H1)=e(k+H1)-beta^H1*(c(k)-ypav(k))其中的e(k+H1)应该为c(k+H1)
    %即yr(k+H1)=c(k+H1)-beta^H1*(c(k)-ypav(k))
    %X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1)
  
    yr(k+H1)=(k+H1)*Ts-beta^H1*((k+0)*Ts-y(k));
    yr(k+H2)=(k+H2)*Ts-beta^H2*((k+0)*Ts-y(k));
    e(k+H1)=y(k)-ym(k);
    e(k+H2)=y(k)-ym(k);
    X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1);
    X2=yr(k+H2)-alph^H2*ym(k)-e(k+H2);
    
    
    %控制器输出
    u(k)=(G2(H2)*X1-G2(H1)*X2)/(G1(H1)*G2(H2)-G1(H2)*G2(H1));
    
    
    %参数更新
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
for k=81:1:160
    time(k)=k*Ts;
    c(k)=40;%设定值
   
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
    
  
    yr(k+H1)=40-beta^H1*(40-y(k));
    yr(k+H2)=40-beta^H2*(40-y(k));
    e(k+H1)=y(k)-ym(k);
    e(k+H2)=y(k)-ym(k);
    X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1);
    X2=yr(k+H2)-alph^H2*ym(k)-e(k+H2);
    u(k)=(G2(H2)*X1-G2(H1)*X2)/(G1(H1)*G2(H2)-G1(H2)*G2(H1));
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
for k=161:1:200
    time(k)=k*Ts;
    c(k)=-1.5*k*Ts+160;
    
 
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
 
  
    yr(k+H1)=-1.5*(k+H1)*Ts+160-beta^H1*(c(k)-y(k));
    yr(k+H2)=-1.5*(k+H2)*Ts+160-beta^H2*(c(k)-y(k));
    e(k+H1)=y(k)-ym(k);
    e(k+H2)=y(k)-ym(k);
    X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1);
    X2=yr(k+H2)-alph^H2*ym(k)-e(k+H2);
    u(k)=(G2(H2)*X1-G2(H1)*X2)/(G1(H1)*G2(H2)-G1(H2)*G2(H1));
    
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
   
    
end
for k=200:1:300
    time(k)=k*Ts;
    c(k)=10;
    
    y(k)=-den(2)*y_1+num(2)*u_1;
    ym(k)=-denm(2)*ym_1+numm(2)*u_1;
 
  
    yr(k+H1)=10-beta^H1*(c(k)-y(k));
    yr(k+H2)=10-beta^H2*(c(k)-y(k));
    e(k+H1)=y(k)-ym(k);
    e(k+H2)=y(k)-ym(k);
    X1=yr(k+H1)-alph^H1*ym(k)-e(k+H1);
    X2=yr(k+H2)-alph^H2*ym(k)-e(k+H2);
    u(k)=(G2(H2)*X1-G2(H1)*X2)/(G1(H1)*G2(H2)-G1(H2)*G2(H1));
    
    u_1=u(k);  
    y_1=y(k);
    ym_1=ym(k);
    
end
figure(1);
plot(time,c,'b-',time,y,'r--');
axis([0 150 0 45])
xlabel('time(s)');ylabel('c,y');
 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -