⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 part1_2.htm

📁 通信原理的经典讲义
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0050)http://www.yobology.info/harbin/part1/part_1_2.htm -->
<HTML><HEAD><TITLE>Part1_2</TITLE>
<META http-equiv=content-type content="text/html; charset=shift_jis">
<META content="MSHTML 6.00.2900.2180" name=GENERATOR></HEAD>
<BODY text=black vLink=black aLink=black link=black bgColor=#223344>
<TABLE 
style="FONT-WEIGHT: normal; FONT-SIZE: 14pt; FONT-STYLE: normal; FONT-FAMILY: 'Times New Roman'; BACKGROUND-COLOR: rgb(204,204,204); TEXT-DECORATION: none" 
width=799 bgColor=#cccccc border=0>
  <TBODY>
  <TR 
  style="BORDER-RIGHT: 4px ridge; BORDER-TOP: 4px ridge; BORDER-LEFT: 4px ridge; BORDER-BOTTOM: 4px ridge; BACKGROUND-COLOR: rgb(204,204,204)">
    <TD 
    style="PADDING-RIGHT: 8px; PADDING-LEFT: 8px; FONT-SIZE: 16pt; PADDING-BOTTOM: 8px; LINE-HEIGHT: 150%; PADDING-TOP: 8px; FONT-FAMILY: 'Times New Roman'" 
    borderColor=#0099ff borderColorLight=#0099ff width=779 
    borderColorDark=#0099ff height=78>
      <P align=right><I><A 
      href="http://www.yobology.info/harbin/part1/index.htm">index</A></I></P>
      <P align=center>Part 1 </P>
      <P align=center>Chapter 2&nbsp;&nbsp;&nbsp;&nbsp;Water Pouring 
      Theorem<BR><BR></P></TD></TR>
  <TR>
    <TD 
    style="PADDING-RIGHT: 8px; PADDING-LEFT: 8px; FONT-SIZE: 14pt; PADDING-BOTTOM: 8px; LINE-HEIGHT: 150%; PADDING-TOP: 8px; FONT-FAMILY: 'Times New Roman'; BACKGROUND-COLOR: rgb(204,204,204)" 
    borderColor=#0099ff borderColorLight=#0099ff width=779 
    borderColorDark=#0099ff height=3103>
      <P>仒 1 &nbsp;Entropy of analog information source<BR>&nbsp;Quantize analog 
      signal<I> x</I> in small section <IMG 
      src="Part1_2.files/part_1_2_htm_eqn24720.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 176 1\delta -->. Then we get the following 
      information about its result <IMG 
      src="Part1_2.files/part_1_2_htm_eqn25460.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 192 1x_{i}-->.</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn24376.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 208 1-\log _{2}\: \varphi (x_{i}\, )\, \delta =-\log _{2}\: \varphi (x_{i})-\log _{2}\delta \; \quad bit-->,</P>
      <P>where <IMG src="Part1_2.files/part_1_2_htm_eqn24959.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 176 1\varphi (\; )--> denotes p.d.f. on which 
      <I>x</I> depends. Suppose that the sampled and quantized sequence is i.i.d 
      (independent and identically distributed), the entropy of this sequence is 
      given by</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn27419.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 208 1E=-\sum _{i=-\infty }^{\infty }\delta \: \varphi (x_{i})\log _{2}\varphi (x_{i})-\log _{2}\delta \quad bit\slash sample--></P>
      <P>Note that the second term in right hand side diverges when <IMG 
      src="Part1_2.files/part_1_2_htm_eqn28498.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 192 1\delta \to 0-->. But since this term does 
      not depend on <IMG src="Part1_2.files/part_1_2_htm_eqn4613.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 192 1\varphi (\; )-->, by discarding it let us 
      define the entropy of analog diganl by</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn28878.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 208 1E=-\int _{-\infty }^{\infty }\: \varphi (x)\log _{2}x\; dx\quad bit\slash sample--></P>
      <P><SPAN style="FONT-SIZE: 12pt"><FONT color=#660000>Note: For uniform 
      distribution in [-D/2,D/2], </FONT></SPAN></P>
      <P align=center><SPAN style="FONT-SIZE: 12pt"><FONT color=#660000><IMG 
      src="Part1_2.files/part_1_2_htm_eqn31568.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 176 1E=-\log _{2}D\quad bit\slash symbol--></FONT></SPAN><SPAN 
      style="FONT-SIZE: 12pt"><FONT color=#660000></FONT></SPAN></P>
      <P><SPAN style="FONT-SIZE: 12pt"><FONT 
      color=#660000>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;For 
      Gaussian distribution, <IMG src="Part1_2.files/part_1_2_htm_eqn32039.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 160 1\varphi (x)=1\slash \sqrt{2\pi \sigma ^{2}}\: \: exp[-x^{2}\slash (2\sigma ^{2}\: )]-->,</FONT></SPAN></P>
      <P align=center><SPAN style="FONT-SIZE: 12pt"><FONT color=#660000><IMG 
      src="Part1_2.files/part_1_2_htm_eqn32309.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 176 1E=-\log _{2}\sqrt{2\pi e\sigma ^{2}}\quad bit\slash sample--></FONT></SPAN></P>
      <P align=left>仒 2 &nbsp;Channel capacity<BR>&nbsp;Mutual entropy under 
      AWGN is derived as</P>
      <P align=left><IMG src="Part1_2.files/part_1_2_htm_eqn30944.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 192 1H(Y)-H(Y\mid X)=\, -\int \, \{ \int \, g(y-x)\varphi (x)dx\cdot \, log_{2}[\int \, g(y-x)\varphi (x)dx]\} dy+\int \, g(y)\, log_{2}g(y)\, dy-->,</P>
      <P align=left>where <IMG src="Part1_2.files/part_1_2_htm_eqn32644.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 192 1g(\; )--> is p.d.f. of AWGN. 
      This maximum value for all <IMG 
      src="Part1_2.files/part_1_2_htm_eqn12533.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 176 1\varphi (\; )--> is called channel 
      capacity, which indicates inherent criteria about&nbsp;the channel. In 
      this AWGN model, mutual entropy is maximized when <IMG 
      src="Part1_2.files/part_1_2_htm_eqn16998.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 176 1\varphi (\; )--> is Gaussain, and channel 
      capacity is written in simple form as</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn18330.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 208 1C=\frac{1}{2}\log _{2}(1+\frac{\sigma _{s}^{2}}{\sigma _{n}^{2}}\: )\quad bit\slash symbol-->,<BR><IMG 
      src="Part1_2.files/part_1_2_htm_eqn18727.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 192 1\sigma _{s^{2}}--> : squared average of 
      signal<BR><IMG src="Part1_2.files/part_1_2_htm_eqn18793.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 192 1\sigma _{n^{2}}--> : squared average of 
      noise.</P>
      <P align=left>For other p.d.f., the mutual entropy cannot be expressed in 
      explicit form but easily plotted by numerical calculation. The graph below 
      shows <IMG src="Part1_2.files/part_1_2_htm_eqn1746.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 192 12\times C--> (red colored) and mutual 
      entropy for uniform distribution (purple colored).</P>
      <P align=center><IMG src="Part1_2.files/img40.gif" border=0></P>
      <P align=left>It should be remarked that these are defined in Euclid 
      space. In digital multi-level PAM systems, as mentioned in previous 
      chapter, the channel capacity should be estimated with Hamming distance 
      and its procedures are rather complicated (refer <A 
      href="http://www.yobology.info/harbin/part1/appendix.htm">Appendix</A>).</P>
      <P align=left>仒 3 &nbsp;Water Pouring Theorem<BR>At first, assume AWGN on 
      the flat baseband channel with bandwidth W Hz. Over this channel we can 
      transmit samples at speed of 2W sample/sec and the channel capacity is 
      given by</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn4461.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 208 1C=W\log _{2}(1+\frac{\sigma _{s}^{2}}{\sigma _{n}^{2}})\quad bit\slash sec--></P>
      <P align=left><SPAN style="FONT-SIZE: 12pt"><FONT color=#660000>Note: 
      "<I>bit/sec</I>" above does not mean physical speed but net amount of 
      information speed.</FONT></SPAN></P>
      <P align=center><IMG height=372 src="Part1_2.files/img1.gif" width=531 
      border=0></P>
      <P align=left>The water pouring theorem answers for the question how to 
      realize channel capacity for additive colored Gaussain noise. </P>
      <P align=center><FONT color=black><IMG height=153 
      src="Part1_2.files/img3.gif" width=564 border=0></FONT></P>
      <P align=left>&nbsp;</P>
      <P align=center>THEOREM (water pouring)<BR>&nbsp;The blue colored spectrum 
      gives the channel capacity.</P>
      <P align=center><FONT color=black><FONT color=maroon><IMG height=396 
      src="Part1_2.files/img2.gif" width=743 border=0></FONT></FONT></P>
      <P align=center>&lt;proof&gt;<BR>Segment bandwidth into narrow sections 
      <BR>and distribute signal power for each section<BR>so that total mutual 
      entropy<BR><IMG src="Part1_2.files/part_1_2_htm_eqn3226.gif" border=0 
      NAMO_EQN__><!--NAMO_EQN__ 208 1M=\sum _{i=1}^{W}\log _{2}(1+SNR_{i})\qquad SNR_{i}\: is\: \sigma _{s}^{2}\slash \sigma _{n}^{2}\: of\: i_{th}\: segment--><BR>is 
      maximized. </P>
      <P align=left><SPAN style="FONT-SIZE: 12pt"><FONT color=maroon>Note: This 
      is typical resource distribution problem to get the maximum 
      gain.</FONT></SPAN></P>
      <P align=left>仒 4 &nbsp;Simple numerical example<BR>&nbsp;Suppose a case 
      of two sections under power constraint <IMG 
      src="Part1_2.files/part_1_2_htm_eqn18120.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 176 1P_{1}+P_{2}=1-->. Blue curves in graphs 
      below show mutual entropy for varying&nbsp;<I>P<SPAN 
      style="FONT-SIZE: 10pt">1</SPAN></I>. Black lines show results of the 
      unified PAM system, i.e.,</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn31100.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 208 12\log _{2}(1+\frac{P_{1}+P_{2}}{N_{1}+N_{2}})--></P>
      <P align=left>It can be said that blue curves are very flat around the 
      optimum except extremely lopsided power distribution. In most cases, equal 
      power distribution gives good performance close to the optimum.</P>
      <P align=left><FONT color=#660000><SPAN style="FONT-SIZE: 12pt">Note: In 
      order to realize blue colored curves by OFDM, we must select best pair of 
      bit/symbol and error rate for each sub-channel.</SPAN></FONT></P>
      <P align=center><IMG height=682 src="Part1_2.files/img41.gif" width=780 
      border=0></P>
      <P align=left>&nbsp;</P>
      <P align=left>仒 5 &nbsp;&nbsp;Cases of the distorted channel<BR>&nbsp;Let 
      <IMG src="Part1_2.files/part_1_2_htm_eqn14105.gif" border=0 NAMO_EQN__><!--NAMO_EQN__ 192 1a_{i}--> denote attenuation of 
      <I>i&nbsp;</I>th frequency section, the water pouring principle can be 
      applied similarly as</P>
      <P align=center><IMG src="Part1_2.files/part_1_2_htm_eqn15154.gif" 
      border=0 NAMO_EQN__><!--NAMO_EQN__ 208 1M=\sum _{i=1}^{W}\log _{2}\: (1+\frac{a_{i}^{2}P_{i}}{N_{i}}\: )=\sum ^{W}_{i=1}\log _{2}(1+\frac{P_{i}}{N_{i}\slash a_{i}^{2}})--></P>
      <P align=left>Here, let us apply the water pouring to a case like metal 
      cable that signal power decays rapidly toward high frequency.</P>
      <P align=center><I>W=8</I> 
      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<I>Ni = 1/1000</I> for all 
      <I>i</I></P>
      <P align=center>&nbsp;</P>
      <P align=center><IMG src="Part1_2.files/img17.gif" border=0></P>
      <P align=center><IMG src="Part1_2.files/img43.gif" border=0></P>
      <P align=center><IMG src="Part1_2.files/img44.gif" border=0></P>
      <P align=left>Case A : Total signal power = 8</P>
      <UL>
        <UL>
          <P align=left>Total channel capacity for optimum distribution = 28.449 
          bit<BR>Total channel capacity for uniform distribution = 28.031 
          bit<BR>PAM with Equalizer = 14.638 bit</P>
          <P align=left>&nbsp;</P></UL></UL>
      <P align=center><IMG src="Part1_2.files/img45.gif" border=0></P>
      <P align=center><IMG src="Part1_2.files/img46.gif" border=0></P>
      <P align=left>Case B&nbsp;: Total signal power = 1</P>
      <UL>
        <P align=left>Total channel capacity for optimum distribution = 
        15.431&nbsp;bit<BR>Total channel capacity for uniform distribution = 
        13.317&nbsp;bit<BR>PAM with Equalizer = 3.199&nbsp;bit</P></UL>
      <P align=left>&nbsp;</P>
      <P align=center><IMG src="Part1_2.files/img47.gif" border=0></P>
      <P align=center><IMG src="Part1_2.files/img48.gif" border=0></P>
      <P align=left>&nbsp;</P></TD></TR></TBODY></TABLE>
<P>&nbsp;</P></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -