⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 opengl 初级学习的一个经典
💻 C
📖 第 1 页 / 共 2 页
字号:
// Block.c
// OpenGL SuperBible, Chapter 1
// Demonstrates an assortment of basic 3D concepts
// Program by Richard S. Wright Jr.

#include <windows.h>
#include <gl/gl.h>
#include <gl/glu.h>
#include <gl/glut.h>
#include <math.h>


// Keep track of effects step
int nStep = 0;


// Lighting data
GLfloat lightAmbient[] = { 0.2f, 0.2f, 0.2f, 1.0f };
GLfloat lightDiffuse[] = { 0.7f, 0.7f, 0.7f, 1.0f };
GLfloat lightSpecular[] = { 0.9f, 0.9f, 0.9f };
GLfloat materialColor[] = { 0.8f, 0.0f, 0.0f };
GLfloat lightpos[] = { -80.0f, 120.0f, 100.0f, 0.0f };
GLfloat ground[3][3] = { { 0.0f, -25.0f, 0.0f },
					  { 10.0f, -25.0f, 0.0f },
					  { 10.0f, -25.0f, -10.0f } };

GLuint textures[4];


///////////////////////////////////////////////////////////////////////////////
// This function opens the bitmap file given (szFileName), verifies that it is
// a 24bit .BMP file and loads the bitmap bits needed so that it can be used
// as a texture. The width and height of the bitmap are returned in nWidth and
// nHeight. The memory block allocated and returned must be deleted with delete [];
// The returned array is an 888 BGR texture (use GL_BGR_EXT or BGRtoRGB for
// glTextImage2D
BYTE* gltReadBMPBits(const char *szFileName, int *nWidth, int *nHeight)
	{
	HANDLE hFileHandle;
	BITMAPINFO *pBitmapInfo = NULL;
	unsigned long lInfoSize = 0;
	unsigned long lBitSize = 0;
	BYTE *pBits = NULL;					// Bitmaps bits
	BITMAPFILEHEADER	bitmapHeader;
	DWORD dwBytes;

	// Open the Bitmap file
	hFileHandle = CreateFile(szFileName,GENERIC_READ,FILE_SHARE_READ,
		NULL,OPEN_EXISTING,FILE_FLAG_SEQUENTIAL_SCAN,NULL);

	// Check for open failure (most likely file does not exist).
	if(hFileHandle == INVALID_HANDLE_VALUE)
		return NULL;

	// File is Open. Read in bitmap header information
	ReadFile(hFileHandle,&bitmapHeader,sizeof(BITMAPFILEHEADER),	
		&dwBytes,NULL);

	// Check for a couple of simple errors	
	if(dwBytes != sizeof(BITMAPFILEHEADER))
		return FALSE;

	// Check format of bitmap file
	if(bitmapHeader.bfType != 'MB')
		return FALSE;

	// Read in bitmap information structure
	lInfoSize = bitmapHeader.bfOffBits - sizeof(BITMAPFILEHEADER);
	pBitmapInfo = (BITMAPINFO *) malloc(sizeof(BYTE)*lInfoSize);
	ReadFile(hFileHandle,pBitmapInfo,lInfoSize,&dwBytes,NULL);

	if(dwBytes != lInfoSize)
		{
        free(pBitmapInfo);
		CloseHandle(hFileHandle);
		return FALSE;
		}

	// Save the size and dimensions of the bitmap
	*nWidth = pBitmapInfo->bmiHeader.biWidth;
	*nHeight = pBitmapInfo->bmiHeader.biHeight;
	lBitSize = pBitmapInfo->bmiHeader.biSizeImage;

	// If the size isn't specified, calculate it anyway	
	if(pBitmapInfo->bmiHeader.biBitCount != 24)
		{
        free(pBitmapInfo);
		return FALSE;
		}

	if(lBitSize == 0)
		lBitSize = (*nWidth *
           pBitmapInfo->bmiHeader.biBitCount + 7) / 8 *
  		  abs(*nHeight);

	// Allocate space for the actual bitmap
	free(pBitmapInfo);
	pBits = malloc(sizeof(BYTE)*lBitSize);

	// Read in the bitmap bits, check for corruption
	if(!ReadFile(hFileHandle,pBits,lBitSize,&dwBytes,NULL) ||
			dwBytes != (sizeof(BYTE)*lBitSize))
		pBits = NULL;

	// Close the bitmap file now that we have all the data we need
	CloseHandle(hFileHandle);

	return pBits;
	}

// Reduces a normal vector specified as a set of three coordinates,
// to a unit normal vector of length one.
void ReduceToUnit(float vector[3])
	{
	float length;
	
	// Calculate the length of the vector		
	length = (float)sqrt((vector[0]*vector[0]) + 
						(vector[1]*vector[1]) +
						(vector[2]*vector[2]));

	// Keep the program from blowing up by providing an exceptable
	// value for vectors that may calculated too close to zero.
	if(length == 0.0f)
		length = 1.0f;

	// Dividing each element by the length will result in a
	// unit normal vector.
	vector[0] /= length;
	vector[1] /= length;
	vector[2] /= length;
	}


// Points p1, p2, & p3 specified in counter clock-wise order
void calcNormal(float v[3][3], float out[3])
	{
	float v1[3],v2[3];
	static const int x = 0;
	static const int y = 1;
	static const int z = 2;

	// Calculate two vectors from the three points
	v1[x] = v[0][x] - v[1][x];
	v1[y] = v[0][y] - v[1][y];
	v1[z] = v[0][z] - v[1][z];

	v2[x] = v[1][x] - v[2][x];
	v2[y] = v[1][y] - v[2][y];
	v2[z] = v[1][z] - v[2][z];

	// Take the cross product of the two vectors to get
	// the normal vector which will be stored in out
	out[x] = v1[y]*v2[z] - v1[z]*v2[y];
	out[y] = v1[z]*v2[x] - v1[x]*v2[z];
	out[z] = v1[x]*v2[y] - v1[y]*v2[x];

	// Normalize the vector (shorten length to one)
	ReduceToUnit(out);
	}


// Creates a shadow projection matrix out of the plane equation
// coefficients and the position of the light. The return value is stored
// in destMat[][]
void MakeShadowMatrix(GLfloat points[3][3], GLfloat lightPos[4], GLfloat destMat[4][4])
	{
	GLfloat planeCoeff[4];
	GLfloat dot;

	// Find the plane equation coefficients
	// Find the first three coefficients the same way we
	// find a normal.
	calcNormal(points,planeCoeff);

	// Find the last coefficient by back substitutions
	planeCoeff[3] = - (
		(planeCoeff[0]*points[2][0]) + (planeCoeff[1]*points[2][1]) +
		(planeCoeff[2]*points[2][2]));


	// Dot product of plane and light position
	dot = planeCoeff[0] * lightPos[0] +
			planeCoeff[1] * lightPos[1] +
			planeCoeff[2] * lightPos[2] +
			planeCoeff[3] * lightPos[3];

	// Now do the projection
	// First column
    destMat[0][0] = dot - lightPos[0] * planeCoeff[0];
    destMat[1][0] = 0.0f - lightPos[0] * planeCoeff[1];
    destMat[2][0] = 0.0f - lightPos[0] * planeCoeff[2];
    destMat[3][0] = 0.0f - lightPos[0] * planeCoeff[3];

	// Second column
	destMat[0][1] = 0.0f - lightPos[1] * planeCoeff[0];
	destMat[1][1] = dot - lightPos[1] * planeCoeff[1];
	destMat[2][1] = 0.0f - lightPos[1] * planeCoeff[2];
	destMat[3][1] = 0.0f - lightPos[1] * planeCoeff[3];

	// Third Column
	destMat[0][2] = 0.0f - lightPos[2] * planeCoeff[0];
	destMat[1][2] = 0.0f - lightPos[2] * planeCoeff[1];
	destMat[2][2] = dot - lightPos[2] * planeCoeff[2];
	destMat[3][2] = 0.0f - lightPos[2] * planeCoeff[3];

	// Fourth Column
	destMat[0][3] = 0.0f - lightPos[3] * planeCoeff[0];
	destMat[1][3] = 0.0f - lightPos[3] * planeCoeff[1];
	destMat[2][3] = 0.0f - lightPos[3] * planeCoeff[2];
	destMat[3][3] = dot - lightPos[3] * planeCoeff[3];
	}



// Called to draw scene
void RenderScene(void)
	{
	GLfloat cubeXform[4][4];

	// Clear the window with current clearing color
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glShadeModel(GL_SMOOTH);
	glEnable(GL_NORMALIZE);

	glPushMatrix();

	// Draw plane that the cube rests on
	glDisable(GL_LIGHTING);
	if(nStep == 5)
		{
		glColor3ub(255,255,255);
		glEnable(GL_TEXTURE_2D);
		glBindTexture(GL_TEXTURE_2D, textures[0]);
		glBegin(GL_QUADS);
			glTexCoord2f(0.0f, 0.0f);
			glVertex3f(-100.0f, -25.3f, -100.0f);
			glTexCoord2f(0.0f, 1.0f);
			glVertex3f(-100.0f, -25.3f, 100.0f);		
			glTexCoord2f(1.0f, 1.0f);
			glVertex3f(100.0f,  -25.3f, 100.0f);
			glTexCoord2f(1.0f, 0.0f);
			glVertex3f(100.0f,  -25.3f, -100.0f);
		glEnd();
		}
	else
		{
		glColor3f(0.0f, 0.0f, 0.90f); // Blue
		glBegin(GL_QUADS);
			glVertex3f(-100.0f, -25.3f, -100.0f);
			glVertex3f(-100.0f, -25.3f, 100.0f);		
			glVertex3f(100.0f,  -25.3f, 100.0f);
			glVertex3f(100.0f,  -25.3f, -100.0f);
		glEnd();
		}


	// Set drawing color to Red
	glColor3f(1.0f, 0.0f, 0.0f);

	// Enable, disable lighting
	if(nStep > 2)
		{
		glEnable(GL_DEPTH_TEST);
		glDepthFunc(GL_LEQUAL);
		glEnable(GL_COLOR_MATERIAL);

		glLightfv(GL_LIGHT0, GL_AMBIENT, lightAmbient);
		glLightfv(GL_LIGHT0, GL_DIFFUSE, lightDiffuse);
		glLightfv(GL_LIGHT0, GL_SPECULAR, lightSpecular);
		glEnable(GL_LIGHTING);
		glEnable(GL_LIGHT0);
		glMaterialfv(GL_FRONT, GL_SPECULAR,lightSpecular);
		glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, materialColor);
		glMateriali(GL_FRONT, GL_SHININESS,128);
		}

	// Move the cube slightly forward and to the left
	glTranslatef(-10.0f, 0.0f, 10.0f);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -