⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 emeter-background.c

📁 msp430F437三相电表DEMO(编译器 IAR 3.42A)
💻 C
📖 第 1 页 / 共 4 页
字号:
//  File: emeter-background.c
//
//  Steve Underwood <steve-underwood@ti.com>
//  Texas Instruments Hong Kong Ltd.
//
//  $Id: emeter-background.c,v 1.28 2005/12/20 10:17:56 a0754793 Exp $
//
/*! \file emeter-structs.h */
//
//--------------------------------------------------------------------------
//
//  MSP430 background (interrupt) routines for e-meters
//
//  This software is appropriate for single phase and three phase e-meters
//  using a voltage sensor plus a CT or shunt resistor current sensors, or
//  a combination of a CT plus a shunt. 
//
//    The background process deals with the input samples.
//    These are first stored into buffers.
//    The buffered samples are processed as follows:
//    -Voltage and current signals are converted to DC-less AC signals
//    -The current signal is phase compensated
//    -Voltage and current are signed multiplied to give power.
//    -Power samples are accumulated. The accumulated power samples are averaged (in foreground.c)
//     after a number of voltage cycles has been detected.   
//
#include <stdint.h>
#include <stdlib.h>
#include <io.h>
#include <emeter-toolkit.h>
#include "emeter.h"
#include "emeter-structs.h"

#if !defined(NULL)
#define NULL    (void *) 0
#endif

int samples_per_second;

#if defined(RF_LINK_SUPPORT)
int rf_timeout;
#endif
#if defined(PWM_DITHERING_SUPPORT)
unsigned char pwm_stutter;
#endif

#if defined(__MSP430__)
    #if defined(BASIC_KEYPAD_SUPPORT)  ||  defined(CUSTOM_KEYPAD_SUPPORT)
        #if defined(sense_key_1_up)
static unsigned char debounce_key_1;
static int key_timer_1;
        #endif
        #if defined(sense_key_2_up)
static unsigned char debounce_key_2;
static int key_timer_2;
        #endif
        #if defined(sense_key_3_up)
static unsigned char debounce_key_3;
static int key_timer_3;
        #endif
        #if defined(sense_key_4_up)
static unsigned char debounce_key_4;
static int key_timer_4;
        #endif
unsigned char key_states;
    #endif
#endif

unsigned int battery_countdown;

#if defined(POWER_DOWN_SUPPORT)  &&  defined(POWER_UP_BY_SUPPLY_SENSING)
unsigned char power_down_debounce;
#endif
#if  defined(POWER_DOWN_SUPPORT)  &&  defined(POWER_UP_BY_VOLTAGE_PULSES)
unsigned char pd_pin_debounce;
#endif

#if defined(FINE_ENERGY_PULSE_TIMING_SUPPORT)
unsigned char fine_pulse_operation;
#endif

#if defined(MAGNETIC_INTERFERENCE_SUPPORT)
unsigned int magnetic_sensor_count;
unsigned int magnetic_sensor_count_logged;
#endif

/* This keypad debounce code provides for 1 to 4 keys, with debounce + long
   press detect, of debounce + auto-repeat on long press selectable for each
   key. Definitions in emeter.h control this. A long press means >2s.
   Auto-repeat means holding the key >1s starts repeats at 3 per second. */
#if defined(__MSP430__)  &&  (defined(BASIC_KEYPAD_SUPPORT)  ||  defined(CUSTOM_KEYPAD_SUPPORT))
static __inline__ int keypad_debounce(void)
{
    int kick_foreground;
    
    kick_foreground = FALSE;
    #if defined(sense_key_1_up)
    switch (debounce(&debounce_key_1, sense_key_1_up()))
    {
    case DEBOUNCE_JUST_RELEASED:
        key_timer_1 = 0;
        break;
    case DEBOUNCE_JUST_HIT:
        #if defined(KEY_1_LONG_DOWN)
        /* Start a 2s timer to detect mode change request */
        key_timer_1 = samples_per_second << 1;
        #elif defined(KEY_1_REPEAT_DOWN)
        /* Start an initial 1s timeout for repeats */
        key_timer_1 = samples_per_second;
        #endif
        key_states |= KEY_1_DOWN;
        kick_foreground = TRUE;
        break;
    case DEBOUNCE_HIT:
        if (key_timer_1  &&  --key_timer_1 == 0)
        {
        #if defined(KEY_1_LONG_DOWN)
            key_states |= KEY_1_LONG_DOWN;
        #elif defined(KEY_1_REPEAT_DOWN)
            /* Start a 1/3s timeout for repeats */
            #if defined(LIMP_MODE_SUPPORT)
            if (operating_mode == OPERATING_MODE_LIMP)
                key_timer_1 = 273;
            else
            #endif
                key_timer_1 = 1092;
            key_states |= KEY_1_REPEAT_DOWN;
        #endif
            kick_foreground = TRUE;
        }
        break;
    }
    #endif
    #if defined(sense_key_2_up)
    switch (debounce(&debounce_key_2, sense_key_2_up()))
    {
    case DEBOUNCE_JUST_RELEASED:
        key_timer_2 = 0;
        break;
    case DEBOUNCE_JUST_HIT:
        #if defined(KEY_2_LONG_DOWN)
        /* Start a 2s timer to detect mode change request */
        key_timer_2 = samples_per_second << 1;
        #elif defined(KEY_2_REPEAT_DOWN)
        /* Start an initial 1s timeout for repeats */
        key_timer_2 = samples_per_second;
        #endif
        key_states |= KEY_2_DOWN;
        kick_foreground = TRUE;
        break;
    case DEBOUNCE_HIT:
        if (key_timer_2  &&  --key_timer_2 == 0)
        {
        #if defined(KEY_2_LONG_DOWN)
            key_states |= KEY_2_LONG_DOWN;
        #elif defined(KEY_2_REPEAT_DOWN)
            /* Start a 1/3s timeout for repeats */
            key_timer_2 = 1092;
            key_states |= KEY_2_REPEAT_DOWN;
        #endif
            kick_foreground = TRUE;
        }
        break;
    }
    #endif
    #if defined(sense_key_3_up)
    switch (debounce(&debounce_key_3, sense_key_3_up()))
    {
    case DEBOUNCE_JUST_RELEASED:
        key_timer_3 = 0;
        break;
    case DEBOUNCE_JUST_HIT:
        #if defined(KEY_3_LONG_DOWN)
        /* Start a 2s timer to detect mode change request */
        key_timer_3 = samples_per_second << 1;
        #elif defined(KEY_3_REPEAT_DOWN)
        /* Start an initial 1s timeout for repeats */
        key_timer_3 = samples_per_second;
        #endif
        key_states |= KEY_3_DOWN;
        kick_foreground = TRUE;
        break;
    case DEBOUNCE_HIT:
        if (key_timer_3  &&  --key_timer_3 == 0)
        {
        #if defined(KEY_3_LONG_DOWN)
            key_states |= KEY_3_LONG_DOWN;
        #elif defined(KEY_3_REPEAT_DOWN)
            /* Start a 1/3s timeout for repeats */
            key_timer_3 = 1092;
            key_states |= KEY_3_REPEAT_DOWN;
        #endif
            kick_foreground = TRUE;
        }
        break;
    }
    #endif
    #if defined(sense_key_4_up)
    switch (debounce(&debounce_key_4, sense_key_4_up()))
    {
    case DEBOUNCE_JUST_RELEASED:
        key_timer_4 = 0;
        break;
    case DEBOUNCE_JUST_HIT:
        #if defined(KEY_4_LONG_DOWN)
        /* Start a 2s timer to detect mode change request */
        key_timer_4 = samples_per_second << 1;
        #elif defined(KEY_4_REPEAT_DOWN)
        /* Start an initial 1s timeout for repeats */
        key_timer_4 = samples_per_second;
        #endif
        key_states |= KEY_4_DOWN;
        kick_foreground = TRUE;
        break;
    case DEBOUNCE_HIT:
        if (key_timer_4  &&  --key_timer_4 == 0)
        {
        #if defined(KEY_4_LONG_DOWN)
            key_states |= KEY_3_LONG_DOWN;
        #elif defined(KEY_4_REPEAT_DOWN)
            /* Start a 1/3s timeout for repeats */
            key_timer_4 = 1092;
            key_states |= KEY_4_REPEAT_DOWN;
        #endif
            kick_foreground = TRUE;
        }
        break;
    }
    #endif
    return  kick_foreground;
}
#endif 

#if defined(SINGLE_PHASE)
static void __inline__ log_parameters(void)
#else
static void __inline__ log_parameters(struct phase_parms_s *phase)
#endif
{
#if GAIN_STAGES > 1
    int i;
#else
#define i 0
#endif

    /**/ P3OUT ^= 0x02;

    /* Take a snapshot of various values for logging purposes; tell the
       foreground to deal with them; and clear the working values ready
       for the next analysis period. */
    if (phase->V_endstops <= 0)
        phase->status |= V_OVERRANGE;
    else
        phase->status &= ~V_OVERRANGE;
    phase->V_endstops = ENDSTOP_HITS_FOR_OVERLOAD;
#if defined(VRMS_SUPPORT)
    transfer48(phase->V_sq_accum_logged, phase->V_sq_accum);
#endif

    if (phase->current.I_endstops <= 0)
        phase->status |= I_OVERRANGE;
    else
        phase->status &= ~I_OVERRANGE;
    phase->current.I_endstops = ENDSTOP_HITS_FOR_OVERLOAD;
#if defined(SINGLE_PHASE)  &&  defined(NEUTRAL_MONITOR_SUPPORT)
    if (phase->neutral.I_endstops <= 0)
        phase->status |= I_NEUTRAL_OVERRANGE;
    else
        phase->status &= ~I_NEUTRAL_OVERRANGE;
    phase->neutral.I_endstops = ENDSTOP_HITS_FOR_OVERLOAD;
#endif

    phase->current.sample_count_logged = phase->current.sample_count;
    phase->current.sample_count = 0;
#if defined(SINGLE_PHASE)  &&  defined(NEUTRAL_MONITOR_SUPPORT)
    phase->neutral.sample_count_logged = phase->neutral.sample_count;
    phase->neutral.sample_count = 0;
#endif
#if GAIN_STAGES > 1
    for (i = 0;  i < GAIN_STAGES;  i++)
#endif
    {
#if defined(IRMS_SUPPORT)
        transfer48(phase->current.I_sq_accum_logged[i], phase->current.I_sq_accum[i]);
#endif
        transfer48(phase->current.P_accum_logged[i], phase->current.P_accum[i]);
#if defined(REACTIVE_POWER_BY_QUADRATURE_SUPPORT)
        transfer48(phase->current.P_reactive_accum_logged[i], phase->current.P_reactive_accum[i]);
#endif

#if defined(SINGLE_PHASE)  &&  defined(NEUTRAL_MONITOR_SUPPORT)
    #if defined(IRMS_SUPPORT)
        transfer48(phase->neutral.I_sq_accum_logged[i], phase->neutral.I_sq_accum[i]);
    #endif
        transfer48(phase->neutral.P_accum_logged[i], phase->neutral.P_accum[i]);
    #if defined(REACTIVE_POWER_BY_QUADRATURE_SUPPORT)
        transfer48(phase->neutral.P_reactive_accum_logged[i], phase->neutral.P_reactive_accum[i]);
    #endif
#endif
    }
    phase->sample_count_logged = phase->sample_count;
    phase->sample_count = 0;
#if defined(MAGNETIC_INTERFERENCE_SUPPORT)
    magnetic_sensor_count_logged = magnetic_sensor_count;
    /* Don't reset to zero, to prevent divide by zero */
    magnetic_sensor_count = 1;
#endif
    
    /* Tell the foreground there are things to process. */
    phase->status |= NEW_LOG;
#if GAIN_STAGES <= 1
#undef i
#endif
}

#if !defined(SINGLE_PHASE)  &&  defined(NEUTRAL_MONITOR_SUPPORT)  &&  defined(IRMS_SUPPORT)
/* This routine logs neutral lead information for poly-phase meters. It is
   not used for single phase meters with neutral monitoring. */
static void __inline__ log_neutral_parameters(void)
{
#if GAIN_STAGES > 1
    int i;
#else
#define i 0
#endif

    if (neutral.I_endstops <= 0)
        neutral.status |= I_OVERRANGE;
    else
        neutral.status &= ~I_OVERRANGE;
    neutral.I_endstops = ENDSTOP_HITS_FOR_OVERLOAD;
    neutral.sample_count_logged = neutral.sample_count;
#if GAIN_STAGES > 1
    for (i = 0;  i < GAIN_STAGES;  i++)
#endif
    {
    #if defined(IRMS_SUPPORT)  ||  defined(POWER_FACTOR_SUPPORT)
        transfer48(neutral.I_sq_accum_logged[i], neutral.I_sq_accum[i]);
    #endif
        neutral.sample_count[i] = 0;
    }

    /* Tell the foreground there are things to process. */
    neutral.status |= NEW_LOG;

#if GAIN_STAGES <= 1
#undef i
#endif
}
#endif

#if defined(HARMONICS_SUPPORT)
const int16_t harm_factors[][4] =
{
    {   138,   2040,   1972,   1839},
    {   138,   2039,   1972,   1838},
    {   137,   2039,   1971,   1838},
    {   137,   2039,   1971,   1837},
    {   137,   2039,   1971,   1836},
    {   137,   2039,   1970,   1835},
    {   136,   2039,   1970,   1834},
    {   136,   2039,   1970,   1833},
    {   136,   2039,   1969,   1832},
    {   135,   2039,   1969,   1831},
    {   135,   2039,   1969,   1831},
    {   135,   2039,   1968,   1830},
    {   135,   2039,   1968,   1829},
    {   134,   2039,   1968,   1828},
    {   134,   2039,   1968,   1827},
    {   134,   2039,   1967,   1826},
    {   133,   2039,   1967,   1825},
    {   133,   2039,   1967,   1824},
    {   133,   2039,   1966,   1823},
    {   133,   2039,   1966,   1823},
    {   132,   2039,   1966,   1822},
    {   132,   2039,   1965,   1821},
    {   132,   2039,   1965,   1820},
    {   132,   2039,   1965,   1819},
    {   131,   2039,   1964,   1818},
    {   131,   2039,   1964,   1817},
    {   131,   2039,   1964,   1816},
    {   131,   2039,   1963,   1815},
    {   130,   2038,   1963,   1814},
    {   130,   2038,   1963,   1814},
    {   130,   2038,   1962,   1813},
    {   130,   2038,   1962,   1812},
    {   129,   2038,   1962,   1811},

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -