⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaboost算法中寻找最优阈值分类器的代码优化.htm

📁 AdaBoost算法中寻找最优阈值分类器的代码优化.htm
💻 HTM
📖 第 1 页 / 共 3 页
字号:
                 
      bestError=tempError;<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp; bestThresh=tempThresh;<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; bestBias=tempBias;<BR>&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;end<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;%将搜索范围缩小,继续进行搜索<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;span=(maxFea-minFea)/8;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp; % 搜索范围减为原有的1/4&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; 
      <BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;maxFea=tempThresh+span;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; % 减少搜索范围后搜索空间的最大值&nbsp; 
      &nbsp;&nbsp;&nbsp;<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;minFea=tempThresh-span;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;% 减少搜索范围后搜索空间的最小值<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;step=(maxFea-minFea)/(sectNum-1);% 
      减少搜索范围后每次搜索的递增量<BR>end<BR><BR>在将循环向量化,并删除一些重复的赋值运算后。代码量大大减少,计算效率也得到极大改善。<BR><BR>% 
      在特征列上获得最优的阈值分类器<BR>% <BR>% 假设分布满足高斯分布<BR>% 通过高斯模型求取两个类别的均值<BR>% 
      在两个类别的均值中间搜索最有阈值分类器<BR>% 采用逐步求精的搜索策略<BR>%<BR>% 输入:<BR>% FeatureVector 
      特征向量,查找最佳弱分类器的特征列;列向量&nbsp; &nbsp;&nbsp; &nbsp;<BR>% Y&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; 每个样本所属类别的标识,长度为rows;列向量<BR>% rows&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; 样本容量 <BR>% weight&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;权重向量,存放当前每个样本的权重值<BR>% <BR>% 
      输出:<BR>%&nbsp;&nbsp;bestError&nbsp; &nbsp; 
      搜索到第j列最佳弱分类器得到的最小错误率<BR>%&nbsp;&nbsp;bestThresh&nbsp; 
      &nbsp;搜索到第j列最佳弱分类器的阈值<BR>%&nbsp;&nbsp;bestBias&nbsp; 
      &nbsp;&nbsp;&nbsp;搜索到第j列最佳弱分类器的偏置<BR>% <BR>% 迭代4次,每次将区间划分为8个小段<BR>%<BR>% 
      调用格式为<BR>% 
      [bestError,bestThresh,bestBias]=searchBestWeakLearner(FeatureVector,Y,rows,weight)<BR>% 
      <BR>% 2007-11-07&nbsp;&nbsp;<BR>% <BR>% findBestWeakLearner 扩展版本<BR>% 
      <BR>function 
      [bestError,bestThresh,bestBias]=searchBestWeakLearner(FeatureVector,Y,rows,weight)<BR>% 
      检查输入特征向量与类标需为列向量<BR>iptcheckinput(FeatureVector,{'logical','numeric'},{'column','nonempty','real'},mfilename, 
      'FeatureVector', 
      1);<BR>iptcheckinput(Y,{'logical','numeric'},{'column','nonempty','integer'},mfilename, 
      'Y', 2);<BR><BR>u1=mean(FeatureVector(find(Y==1)));&nbsp; &nbsp;&nbsp; 
      &nbsp;% 类别1均值<BR>u2=mean(FeatureVector(find(Y==0)));&nbsp; &nbsp;&nbsp; 
      &nbsp;% 类别2均值<BR><BR>iteration=4;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;% 
      迭代次数<BR>sectNum=8;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; % 
      每次迭代,将搜索区域划分的片段<BR><BR>maxFea=max(u1,u2);&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;% 搜索空间的最大值 
      <BR>minFea=min(u1,u2);&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;% 
      搜索空间的最小值<BR>step=(maxFea-minFea)/(sectNum-1);&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;% 每次搜索的递增量<BR>bestError=rows;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;% 初值:最好的分类器错误率<BR><BR>for 
      iter=1:iteration&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;% 
      迭代iteration次,范围逐步缩小,寻找最优值<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;tempError=rows;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;% 初值:第iter次迭代的分类器错误率&nbsp; 
      &nbsp;&nbsp; &nbsp;<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;for 
      i=1:sectNum&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;% 第iter次迭代的搜索次数<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;thresh=minFea+(i-1)*step;&nbsp; &nbsp; % 
      第i次搜索的阈值<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;h=FeatureVector&lt;thresh;&nbsp; &nbsp;&nbsp; &nbsp;% 
      所有样本的阈值分类结果<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;error=sum(weight(find(h~=Y)));% 第iter次迭代第i次搜索加权错误率<BR>&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;p=1;<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;if(error&gt;0.5)&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; % 
      若错误率超过0.5,则将偏置反向<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp; error=1-error;<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp; p=-1;<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;end<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;if( error&lt;bestError )&nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;% 
      第iter次迭代最优的错误率 阈值 偏置<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp; bestError=error;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;% 第iter次迭代最小的错误率<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp; bestThresh=thresh;&nbsp; &nbsp;% 
      第iter次迭代最小错误分类情况下的阈值<BR>&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp; bestBias=p;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;% 第iter次迭代最小错误分类情况下的偏置<BR>&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;end<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;end%end for i<BR><BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;% 将搜索范围缩小,继续进行搜索<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp;&nbsp;span=(maxFea-minFea)/8;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;% 搜索范围减为原有的1/4&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;<BR>&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;maxFea=bestThresh+span;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp; % 减少搜索范围后搜索空间的最大值&nbsp; &nbsp;&nbsp;&nbsp;<BR>&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;minFea=bestThresh-span;&nbsp; &nbsp;&nbsp; 
      &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;% 减少搜索范围后搜索空间的最小值<BR>&nbsp; &nbsp;&nbsp; 
      &nbsp; <BR>&nbsp; &nbsp;&nbsp; &nbsp; step=(maxFea-minFea)/(sectNum-1); % 
      减少搜索范围后每次搜索的递增量<BR>end<BR><BR><BR><BR>针对2000个样本,训练50轮AdaBoost分类器,采用findBestWeakLearner搜索最优分类器耗时150s,采用searchBestWeakLearner耗时50s,仅为原有1/3。<BR><BR>toself: 
      程序改变心境</DIV></DIV>
      <DIV class=signatures style="maxHeightIE: 2880px">欢迎朋友们加入我们这个大家庭! </DIV>
      <DIV></DIV></TD></TR>
  <TR>
    <TD class=postauthor>
      <DIV class="popupmenu_popup userinfopanel" id=userinfo47019_menu 
      style="DISPLAY: none">
      <DL>
        <DT>UID</DT>
        <DD>3851&nbsp;</DD>
        <DT>帖子</DT>
        <DD>1656&nbsp;</DD>
        <DT>精华</DT>
        <DD><A 
        href="http://www.webmastersky.cn/digest.php?authorid=3851">0</A>&nbsp;</DD>
        <DT>积分</DT>
        <DD>0&nbsp;</DD>
        <DT>阅读权限</DT>
        <DD>200&nbsp;</DD>
        <DT>在线时间</DT>
        <DD>1008 小时&nbsp;</DD>
        <DT>注册时间</DT>
        <DD>2007-8-28&nbsp;</DD>
        <DT>最后登录</DT>
        <DD>2008-7-9&nbsp;</DD></DL>
      <P><A 
      href="http://www.webmastersky.cn/space.php?action=viewpro&amp;uid=3851" 
      target=_blank>查看详细资料</A></P></DIV></TD>
    <TD class=postcontent>
      <DIV class=postactions>
      <P><STRONG title=顶部 onclick=scroll(0,0)>TOP</STRONG> </P>
      <DIV id=ad_thread1_0></DIV></DIV></TD></TR></TBODY></TABLE></DIV>
<DIV id=ad_interthread></DIV>
<DIV class="mainbox viewthread">
<TABLE id=pid48281 cellSpacing=0 cellPadding=0 summary=pid48281>
  <TBODY>
  <TR>
    <TD class=postauthor><CITE><A class=dropmenu id=userinfo48281 
      onmouseover=showMenu(this.id) 
      href="http://www.webmastersky.cn/space.php?uid=4015" 
      target=_blank>hijk227</A></CITE> 
      <DIV class=avatar><IMG class=avatar alt="" 
      src="AdaBoost算法中寻找最优阈值分类器的代码优化.files/noavatar.gif"></DIV>
      <P><EM>新手上路</EM></P>
      <P><IMG alt="Rank: 1" 
      src="AdaBoost算法中寻找最优阈值分类器的代码优化.files/star_level1.gif"></P>
      <UL>
        <LI class=pm><A id=ajax_uid_48281 
        onclick="ajaxmenu(event, this.id, 9000000, null, 0)" 
        href="http://www.webmastersky.cn/pm.php?action=send&amp;uid=4015" 
        target=_blank>发短消息</A> </LI>
        <LI class=buddy><A id=ajax_buddy_1 
        onclick="ajaxmenu(event, this.id, null, 0)" 
        href="http://www.webmastersky.cn/my.php?item=buddylist&amp;newbuddyid=4015&amp;buddysubmit=yes" 
        target=_blank>加为好友</A> </LI>
        <LI class=offline>当前离线 </LI></UL></TD>
    <TD class=postcontent>
      <DIV class=postinfo><STRONG id=postnum_48281 title=复制帖子链接到剪贴板 
      onclick="setcopy('http://www.webmastersky.cn/viewthread.php?tid=35231&amp;page=1#pid48281', '帖子链接已经复制到剪贴板')">2<SUP>#</SUP></STRONG> 
      <EM onclick="$('postmessage_48281').className='t_bigfont'">大</EM> <EM 
      onclick="$('postmessage_48281').className='t_msgfont'">中</EM> <EM 
      onclick="$('postmessage_48281').className='t_smallfont'">小</EM> 发表于 
      2008-7-9 03:53&nbsp; <A 
      href="http://www.webmastersky.cn/viewthread.php?tid=35231&amp;page=1&amp;authorid=4015">只看该作者</A> 
      </DIV>
      <DIV id=ad_thread2_1></DIV>
      <DIV class="postmessage defaultpost">
      <DIV id=ad_thread3_1></DIV>
      <DIV id=ad_thread4_1></DIV>
      <H2>鼻</H2>
      <DIV class=t_msgfont 
      id=postmessage_48281>签名<BR>——----------------------------------------------------------------------------<BR><A 
      href="http://www.bjmr120.com/zxmr/bibuzx/20080320545.htm" 
      target=_blank><FONT size=1><FONT color=black>隆鼻 </FONT></FONT></A><A 
      href="http://www.bjmr120.com/zxmr/bibuzx/20080408356.htm" 
      target=_blank><FONT size=1><FONT color=black>隆鼻术 </FONT></FONT></A><A 
      href="http://www.bjmr120.com/zxmr/bibuzx/20080408539.htm" 
      target=_blank><FONT size=1><FONT color=black>北京隆鼻 </FONT></FONT></A><A 
      href="http://www.bjmr120.com/zxmr/bibuzx/2008040858.htm" 
      target=_blank><FONT size=1><FONT color=black>面部整形 </FONT></FONT></A><A 
      href="http://www.bjmr120.com/zxmr/bibuzx/20080408837.htm" 
      target=_blank><FONT size=1><FONT 
      color=black>隆鼻手术</FONT></FONT></A></DIV></DIV>
      <DIV class=signatures style="maxHeightIE: 2880px"><BR><A 
      href="http://www.bjmr120.com/" target=_blank>北京整形</A><BR><BR></DIV>
      <DIV></DIV></TD></TR>
  <TR>
    <TD class=postauthor>
      <DIV class="popupmenu_popup userinfopanel" id=userinfo48281_menu 
      style="DISPLAY: none">
      <DIV class=imicons><A 
      href="http://wpa.qq.com/msgrd?V=1&amp;Uin=12345678&amp;Site=站长天空&amp;Menu=yes" 
      target=_blank><IMG alt=QQ 
      src="AdaBoost算法中寻找最优阈值分类器的代码优化.files/qq.gif"></A> </DIV>
      <DL>
        <DT>UID</DT>
        <DD>4015&nbsp;</DD>
        <DT>帖子</DT>
        <DD>157&nbsp;</DD>
        <DT>精华</DT>
        <DD><A 
        href="http://www.webmastersky.cn/digest.php?authorid=4015">0</A>&nbsp;</DD>
        <DT>积分</DT>
        <DD>0&nbsp;</DD>
        <DT>阅读权限</DT>
        <DD>10&nbsp;</DD>
        <DT>在线时间</DT>
        <DD>0 小时&nbsp;</DD>
        <DT>注册时间</DT>
        <DD>2008-5-17&nbsp;</DD>
        <DT>最后登录</DT>
        <DD>2008-7-16&nbsp;</DD></DL>
      <P><A href="http://www.bjmr120.com/" target=_blank>查看个人网站</A></P>
      <P><A 
      href="http://www.webmastersky.cn/space.php?action=viewpro&amp;uid=4015" 
      target=_blank>查看详细资料</A></P></DIV></TD>
    <TD class=postcontent>
      <DIV class=postactions>
      <P><STRONG title=顶部 onclick=scroll(0,0)>TOP</STRONG> </P>
      <DIV id=ad_thread1_1></DIV></DIV></TD></TR></TBODY></TABLE></DIV>
<DIV class="mainbox viewthread">
<TABLE id=pid48289 cellSpacing=0 cellPadding=0 summary=pid48289>
  <TBODY>
  <TR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -