📄 intgrad3.m
字号:
function fhat = intgrad3(fx,fy,fz,dx,dy,dz,f111)% intgrad: generates a surface, integrating gradient information.% usage: fhat = intgrad(fx,fy,fz)% usage: fhat = intgrad(fx,fy,fz,dx,dy,dz)% usage: fhat = intgrad(fx,fy,fz,dx,dy,dz,f111)%% arguments: (input)% fx,fy,fz - (ny by nx by nz) arrays, as gradient would have produced.% fx, fy, and fz must all be the same size. Note that x is% assumed to be the column dimension of f, in the meshgrid% convention.%% (nx, ny, nz) must all be at least 2.%% fx, fy, fz will be assumed to contain consistent gradient% information. If they are inconsistent, then the generated% gradient will be solved for in a least squares sense.%% Central differences will be used where possible.%% dx - (OPTIONAL) scalar or vector - denotes the spacing in x% if dx is a scalar, then spacing in x (the column index% of fx and fy) will be assumed to be constant = dx.% if dx is a vector, it denotes the actual coordinates% of the points in x (i.e., the column dimension of fx% and fy.) length(dx) == nx%% DEFAULT: dx = 1%% dy - (OPTIONAL) scalar or vector - denotes the spacing in y% if dy is a scalar, then the spacing in x (the row index% of fx and fy) will be assumed to be constant = dy.% if dy is a vector, it denotes the actual coordinates% of the points in y (i.e., the row dimension of fx% and fy.) length(dy) == ny%% DEFAULT: dy = 1%% dz - (OPTIONAL) scalar or vector - denotes the spacing in z% if dz is a scalar, then the spacing in z (the plane index% of fz) will be assumed to be constant = dz.% if dz is a vector, it denotes the actual coordinates% of the points in z (i.e., the plane dimension of fz)% length(dy) == ny%% DEFAULT: dz = 1%% f111 - (OPTIONAL) scalar - defines the (1,1,1) eleemnt of fhat% after integration. This is just the constant of integration.%% DEFAULT: f111 = 0%% arguments: (output)% fhat - (nx by ny by nz) array containing the integrated gradient%% Example usage: 10x20x30 grid% xp = linspace(0,1,10);% yp = linspace(0,1,20);% zp = linspace(0,1,30);% [x,y,z] = meshgrid(xp,yp,zp);% f = exp(x+y+z) + sin((x-2*y+3*z)*3);% [fx,fy,fz]=gradient(f,xp,yp,zp);% tic,fhat = intgrad3(fx,fy,fz,xp,yp,zp,1);toc% % The time required was 43 seconds% size if (length(size(fx))~=3) || (length(size(fy))~=3) || (length(size(fz))~=3) error 'fx, fy, fz must be 3d arrays'end[ny,nx,nz] = size(fx);if any([ny,nx,nz]~=size(fy)) || any([ny,nx,nz]~=size(fz)) error 'fx, fy, fz must be the same sizes.'endif (nx<2) || (ny<2) || (nz<2) error 'fx, fy and fz must be at least 2x2x2 arrays'end% supply defaults if neededif (nargin<3) || isempty(dx) % default x spacing is 1 dx = 1;endif (nargin<4) || isempty(dy) % default y spacing is 1 dy = 1;endif (nargin<5) || isempty(dz) % default z spacing is 1 dz = 1;endif (nargin<6) || isempty(f111) % default integration constant is 0 f111 = 0;end% if scalar spacings, expand them to be vectorsdx=dx(:);if length(dx) == 1 dx = repmat(dx,nx-1,1);elseif length(dx)==nx % dx was a vector, use diff to get the spacing dx = diff(dx);else error 'dx is not a scalar or of length == nx'enddy=dy(:);if length(dy) == 1 dy = repmat(dy,ny-1,1);elseif length(dy)==ny % dy was a vector, use diff to get the spacing dy = diff(dy);else error 'dy is not a scalar or of length == ny'enddz=dz(:);if length(dz) == 1 dz = repmat(dz,nz-1,1);elseif length(dz)==nz % dz was a vector, use diff to get the spacing dz = diff(dz);else error 'dz is not a scalar or of length == ny'endif (length(f111) > 1) || ~isnumeric(f111) || isnan(f111) || ~isfinite(f111) error 'f111 must be a finite scalar numeric variable.'end% build gradient design matrix, sparsely. Use a central difference% in the body of the array, and forward/backward differences along% the edges.% A will be the final design matrix. it will be sparse.% The unrolling of F will be with row index (y) running most rapidly,% then x , then z moves most slowlyrhs = zeros(3*nx*ny*nz,1);% but build the array elements in AfAf = zeros(3*nx*ny*nz,6);L = 0;% do the leading edge in x, forward differenceindx = 1;[indy,indz] = meshgrid(1:ny,1:nz);indy=indy(:);indz = indz(:);ind = indy + (indx-1)*ny + (indz-1)*ny*nx;m = ny*nz;rind = repmat(L+(1:m)',1,2);cind = [ind,ind+ny];dfdx = repmat([-1 1]./dx(1),m,1);Af(L+(1:m),:) = [rind,cind,dfdx];rhs(L+(1:m)) = fx(ind);L = L+m;% interior partials in x, central differenceif nx>2 [indx,indy,indz] = meshgrid(2:(nx-1),1:ny,1:nz); indx = indx(:); indy = indy(:); indz = indz(:); ind = indy + (indx-1)*ny + (indz-1)*ny*nx; m = (nx-2)*ny*nz; rind = repmat(L+(1:m)',1,2); cind = [ind-ny,ind+ny]; dfdx = 1./(dx(indx-1)+dx(indx)); dfdx = dfdx*[-1 1]; Af(L+(1:m),:) = [rind,cind,dfdx]; rhs(L+(1:m)) = fx(ind); L = L+m;end% do the trailing edge in x, backwards differenceindx = nx;[indy,indz] = meshgrid(1:ny,1:nz);indy=indy(:);indz = indz(:);ind = indy + (indx-1)*ny + (indz-1)*ny*nx;m = ny*nz;rind = repmat(L+(1:m)',1,2);cind = [ind-ny,ind];dfdx = repmat([-1 1]./dx(end),m,1);Af(L+(1:m),:) = [rind,cind,dfdx];rhs(L+(1:m)) = fx(ind);L = L+m;% do the leading edge in y, forward differenceindy = 1;[indx,indz] = meshgrid(1:nx,1:nz);indx = indx(:);indz = indz(:);ind = indy + (indx-1)*ny + (indz-1)*ny*nx;m = nx*nz;rind = repmat(L+(1:m)',1,2);cind = [ind,ind+1];dfdy = repmat([-1 1]./dy(1),m,1);Af(L+(1:m),:) = [rind,cind,dfdy];rhs(L+(1:m)) = fy(ind);L = L+m;% interior partials in y, central differenceif ny>2 [indx,indy,indz] = meshgrid(1:nx,2:(ny-1),1:nz); indx = indx(:); indy = indy(:); indz = indz(:); ind = indy + (indx-1)*ny + (indz-1)*ny*nx; m = nx*(ny-2)*nz; rind = repmat(L+(1:m)',1,2); cind = [ind-1,ind+1]; dfdy = 1./(dy(indy-1)+dy(indy)); dfdy = dfdy*[-1 1]; Af(L+(1:m),:) = [rind,cind,dfdy]; rhs(L+(1:m)) = fy(ind); L = L+m;end% do the trailing edge in y, backwards differenceindy = ny;[indx,indz] = meshgrid(1:nx,1:nz);indx = indx(:);indz = indz(:);ind = indy + (indx-1)*ny + (indz-1)*ny*nx;m = nx*nz;rind = repmat(L+(1:m)',1,2);cind = [ind-1,ind];dfdy = repmat([-1 1]./dy(end),m,1);Af(L+(1:m),:) = [rind,cind,dfdy];rhs(L+(1:m)) = fy(ind);L = L+m;% do the leading edge in z, forward differenceindz = 1;[indx,indy] = meshgrid(1:nx,1:ny);indx = indx(:);indy = indy(:);ind = indy + (indx-1)*ny + (indz-1)*ny*nx;m = nx*ny;rind = repmat(L+(1:m)',1,2);cind = [ind,ind+nx*ny];dfdz = repmat([-1 1]./dz(1),m,1);Af(L+(1:m),:) = [rind,cind,dfdz];rhs(L+(1:m)) = fz(ind);L = L+m;% interior partials in z, central differenceif nz>2 [indx,indy,indz] = meshgrid(1:nx,1:ny,2:(nz-1)); indx = indx(:); indy = indy(:); indz = indz(:); ind = indy + (indx-1)*ny + (indz-1)*ny*nx; m = nx*ny*(nz-2); rind = repmat(L+(1:m)',1,2); cind = [ind-nx*ny,ind+nx*ny]; dfdz = 1./(dz(indz-1)+dz(indz)); dfdz = dfdz*[-1 1]; Af(L+(1:m),:) = [rind,cind,dfdz]; rhs(L+(1:m)) = fz(ind); L = L+m;end% do the trailing edge in z, backwards differenceindz = nz;[indx,indy] = meshgrid(1:nx,1:ny);indx = indx(:);indy = indy(:);ind = indy + (indx-1)*ny + (indz-1)*ny*nx;m = nx*ny;rind = repmat(L+(1:m)',1,2);cind = [ind-nx*ny,ind];dfdz = repmat([-1 1]./dz(end),m,1);Af(L+(1:m),:) = [rind,cind,dfdz];rhs(L+(1:m)) = fz(ind);% finally, we can build the rest of A itself, in its sparse form.A = sparse(Af(:,1:2),Af(:,3:4),Af(:,5:6),3*nx*ny*nz,nx*ny*nz);% Finish up with f11, the constant of integration.% eliminate the first unknown, as f11 is given.rhs = rhs - A(:,1)*f111;% Solve the final system of equations. They will be of% full rank, due to the explicit integration constant.% Just use sparse \fhat = A(:,2:end)\rhs;fhat = reshape([f111;fhat],ny,nx,nz);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -