📄 nutate.m
字号:
function an=nutate(J)
%Nutation in longitude and obliquity
% input: julian date
% return: Nutation in longitude and obliquity (in radians and ")
header;
% The answers are posted here by nutlo():
% Each term in the expansion has a trigonometric
% argument given by
% W = i*MM + j*MS + k*FF + l*DD + m*OM
% where the variables are defined below.
% The nutation in longitude is a sum of terms of the
% form (a + bT) * sin(W). The terms for nutation in obliquity
% are of the form (c + dT) * cos(W). The coefficients
% are arranged in the tabulation as follows:
%
% Coefficient:
% i j k l m a b c d
% 0, 0, 0, 0, 1, -171996, -1742, 92025, 89,
% The first line of the table, above, is done separately
% since two of the values do not fit into 16 bit integers.
% The values a and c are arc seconds times 10000. b and d
% are arc seconds per Julian century times 100000. i through m
% are integers. See the program for interpretation of MM, MS,
% etc., which are mean orbital elements of the Sun and Moon.
%
% If terms with coefficient less than X are omitted, the peak
% errors will be:
%
% omit error, omit error,
% a < longitude c < obliquity
% .0005" .0100" .0008" .0094"
% .0046 .0492 .0095 .0481
% .0123 .0880 .0224 .0905
% .0386 .1808 .0895 .1129
nt=[... %105*9
0, 0, 0, 0, 2, 2062, 2,-895, 5,
-2, 0, 2, 0, 1, 46, 0,-24, 0,
2, 0,-2, 0, 0, 11, 0, 0, 0,
-2, 0, 2, 0, 2,-3, 0, 1, 0,
1,-1, 0,-1, 0,-3, 0, 0, 0,
0,-2, 2,-2, 1,-2, 0, 1, 0,
2, 0,-2, 0, 1, 1, 0, 0, 0,
0, 0, 2,-2, 2,-13187,-16, 5736,-31,
0, 1, 0, 0, 0, 1426,-34, 54,-1,
0, 1, 2,-2, 2,-517, 12, 224,-6,
0,-1, 2,-2, 2, 217,-5,-95, 3,
0, 0, 2,-2, 1, 129, 1,-70, 0,
2, 0, 0,-2, 0, 48, 0, 1, 0,
0, 0, 2,-2, 0,-22, 0, 0, 0,
0, 2, 0, 0, 0, 17,-1, 0, 0,
0, 1, 0, 0, 1,-15, 0, 9, 0,
0, 2, 2,-2, 2,-16, 1, 7, 0,
0,-1, 0, 0, 1,-12, 0, 6, 0,
-2, 0, 0, 2, 1,-6, 0, 3, 0,
0,-1, 2,-2, 1,-5, 0, 3, 0,
2, 0, 0,-2, 1, 4, 0,-2, 0,
0, 1, 2,-2, 1, 4, 0,-2, 0,
1, 0, 0,-1, 0,-4, 0, 0, 0,
2, 1, 0,-2, 0, 1, 0, 0, 0,
0, 0,-2, 2, 1, 1, 0, 0, 0,
0, 1,-2, 2, 0,-1, 0, 0, 0,
0, 1, 0, 0, 2, 1, 0, 0, 0,
-1, 0, 0, 1, 1, 1, 0, 0, 0,
0, 1, 2,-2, 0,-1, 0, 0, 0,
0, 0, 2, 0, 2,-2274,-2, 977,-5,
1, 0, 0, 0, 0, 712, 1,-7, 0,
0, 0, 2, 0, 1,-386,-4, 200, 0,
1, 0, 2, 0, 2,-301, 0, 129,-1,
1, 0, 0,-2, 0,-158, 0,-1, 0,
-1, 0, 2, 0, 2, 123, 0,-53, 0,
0, 0, 0, 2, 0, 63, 0,-2, 0,
1, 0, 0, 0, 1, 63, 1,-33, 0,
-1, 0, 0, 0, 1,-58,-1, 32, 0,
-1, 0, 2, 2, 2,-59, 0, 26, 0,
1, 0, 2, 0, 1,-51, 0, 27, 0,
0, 0, 2, 2, 2,-38, 0, 16, 0,
2, 0, 0, 0, 0, 29, 0,-1, 0,
1, 0, 2,-2, 2, 29, 0,-12, 0,
2, 0, 2, 0, 2,-31, 0, 13, 0,
0, 0, 2, 0, 0, 26, 0,-1, 0,
-1, 0, 2, 0, 1, 21, 0,-10, 0,
-1, 0, 0, 2, 1, 16, 0,-8, 0,
1, 0, 0,-2, 1,-13, 0, 7, 0,
-1, 0, 2, 2, 1,-10, 0, 5, 0,
1, 1, 0,-2, 0,-7, 0, 0, 0,
0, 1, 2, 0, 2, 7, 0,-3, 0,
0,-1, 2, 0, 2,-7, 0, 3, 0,
1, 0, 2, 2, 2,-8, 0, 3, 0,
1, 0, 0, 2, 0, 6, 0, 0, 0,
2, 0, 2,-2, 2, 6, 0,-3, 0,
0, 0, 0, 2, 1,-6, 0, 3, 0,
0, 0, 2, 2, 1,-7, 0, 3, 0,
1, 0, 2,-2, 1, 6, 0,-3, 0,
0, 0, 0,-2, 1,-5, 0, 3, 0,
1,-1, 0, 0, 0, 5, 0, 0, 0,
2, 0, 2, 0, 1,-5, 0, 3, 0,
0, 1, 0,-2, 0,-4, 0, 0, 0,
1, 0,-2, 0, 0, 4, 0, 0, 0,
0, 0, 0, 1, 0,-4, 0, 0, 0,
1, 1, 0, 0, 0,-3, 0, 0, 0,
1, 0, 2, 0, 0, 3, 0, 0, 0,
1,-1, 2, 0, 2,-3, 0, 1, 0,
-1,-1, 2, 2, 2,-3, 0, 1, 0,
-2, 0, 0, 0, 1,-2, 0, 1, 0,
3, 0, 2, 0, 2,-3, 0, 1, 0,
0,-1, 2, 2, 2,-3, 0, 1, 0,
1, 1, 2, 0, 2, 2, 0,-1, 0,
-1, 0, 2,-2, 1,-2, 0, 1, 0,
2, 0, 0, 0, 1, 2, 0,-1, 0,
1, 0, 0, 0, 2,-2, 0, 1, 0,
3, 0, 0, 0, 0, 2, 0, 0, 0,
0, 0, 2, 1, 2, 2, 0,-1, 0,
-1, 0, 0, 0, 2, 1, 0,-1, 0,
1, 0, 0,-4, 0,-1, 0, 0, 0,
-2, 0, 2, 2, 2, 1, 0,-1, 0,
-1, 0, 2, 4, 2,-2, 0, 1, 0,
2, 0, 0,-4, 0,-1, 0, 0, 0,
1, 1, 2,-2, 2, 1, 0,-1, 0,
1, 0, 2, 2, 1,-1, 0, 1, 0,
-2, 0, 2, 4, 2,-1, 0, 1, 0,
-1, 0, 4, 0, 2, 1, 0, 0, 0,
1,-1, 0,-2, 0, 1, 0, 0, 0,
2, 0, 2,-2, 1, 1, 0,-1, 0,
2, 0, 2, 2, 2,-1, 0, 0, 0,
1, 0, 0, 2, 1,-1, 0, 0, 0,
0, 0, 4,-2, 2, 1, 0, 0, 0,
3, 0, 2,-2, 2, 1, 0, 0, 0,
1, 0, 2,-2, 0,-1, 0, 0, 0,
0, 1, 2, 0, 1, 1, 0, 0, 0,
-1,-1, 0, 2, 1, 1, 0, 0, 0,
0, 0,-2, 0, 1,-1, 0, 0, 0,
0, 0, 2,-1, 2,-1, 0, 0, 0,
0, 1, 0, 2, 0,-1, 0, 0, 0,
1, 0,-2,-2, 0,-1, 0, 0, 0,
0,-1, 2, 0, 1,-1, 0, 0, 0,
1, 1, 0,-2, 1,-1, 0, 0, 0,
1, 0,-2, 2, 0,-1, 0, 0, 0,
2, 0, 0, 2, 0, 1, 0, 0, 0,
0, 0, 2, 4, 2,-1, 0, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0];
base=1296000;
jdnut = J;
% Julian centuries from 2000 January 1.5, barycentric dynamical time
T = (J-J2000)/36525.0;
T2 = T * T;
T10 = T / 10.0;
% Fundamental arguments in the FK5 reference system.
% longitude of the mean ascending node of the lunar orbit on the ecliptic, measured from the mean equinox of date
OM = (mod(-6962890.539 * T + 450160.280,base) + (0.008 * T + 7.455) * T2) * STR;
% mean longitude of the Sun minus the mean longitude of the Sun's perigee
MS = (mod(129596581.224 * T + 1287099.804,base) - (0.012 * T + 0.577) * T2) * STR;
% mean longitude of the Moon minus the mean longitude of the Moon's perigee
MM = (mod(1717915922.633 * T + 485866.733,base) + (0.064 * T + 31.310) * T2) * STR;
% mean longitude of the Moon minus the mean longitude of the Moon's node
FF = (mod(1739527263.137 * T + 335778.877,base) + (0.011 * T - 13.257) * T2) * STR;
% mean elongation of the Moon from the Sun.
DD = (mod(1602961601.328 * T + 1072261.307,base) + (0.019 * T - 6.891) * T2) * STR;
% Calculate sin( i*MM ), etc. for needed multiple angles
for i=1:3
ss(1,i)=sin(i*MM);
cc(1,i)=cos(i*MM);
end
for i=1:2
ss(2,i)=sin(i*MS);
cc(2,i)=cos(i*MS);
end
for i=1:4
ss(3,i)=sin(i*FF);
cc(3,i)=cos(i*FF);
end
for i=1:4
ss(4,i)=sin(i*DD);
cc(4,i)=cos(i*DD);
end
for i=1:2
ss(5,i)=sin(i*OM);
cc(5,i)=cos(i*OM);
end
C = 0.0;
D = 0.0;
p = nt; % point to start of table
ip=1;
for i=1:105
ip=1;
% argument of sine and cosine
k1 = 0;
cv = 0.0;
sv = 0.0;
for m=1:5
j = p(i,ip);
ip=ip+1;
if( j~=0 )
k =abs( j);
su = ss(m,k); % sin(k*angle)
if( j < 0 )
su = -su;
end
cu = cc(m,k);
if( k1 == 0 )
% set first angle
sv = su;
cv = cu;
k1 = 1;
else
% combine angles
sw = su*cv + cu*sv;
cv = cu*cv - su*sv;
sv = sw;
end
end
end % end for
% longitude coefficient
f=p(i,6);
k=p(i,7);
if k~=0
f=f+T10*k;
end
%f = *p++;
% if( (k = *p++) != 0 )
% f += T10 * k;
% obliquity coefficient
g=p(i,8);
k=p(i,9);
if k~=0
f=f+T10*k;
end
% g = p++;
% if( (k = *p++) != 0 )
% g += T10 * k;
% accumulate the terms
C =C+ f * sv;
D =D+ g * cv;
end % end for i
% first terms, not in table:
C =C+ (-1742.*T10 - 171996.)*ss(5,1); % sin(OM)
D =D+ ( 89.*T10 + 92025.)*cc(5,1); % cos(OM)
fprintf( 1,'\n\nnutation: in longitude %.3f\", in obliquity %.3f\"\n', .0001*C, D/10000 );
% Save answers, expressed in radians
nutl = 0.0001 * STR * C;
nuto = 0.0001 * D; % in "
% Nutation using nutation in longitude and obliquity from nutlo()and obliquity of the ecliptic from epsiln()
% both calculated for Julian date J.
% * p[] = equatorial rectangular position vector of object for mean ecliptic and equinox of date.
eps=epsiln(J); % obliquity of date
f = eps + nuto;
an=[nutl,f];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -