📄 svm_light.htm
字号:
href="http://links.cse.msu.edu:8000/members/matt_gerber/index.php/Software#SVM-Light_server_mode_classification_module">SVM-Classify
TCP/IP Server</A>: a server version of svm_classify that let's you classify
examples over a TCP/IP port, written by <A
href="http://www.cse.msu.edu/~csega/w/Matt_Gerber">Matthew Gerber</A> (for <A
href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light_v6.01.eng.html">SVM<SUP><I>light</I></SUP>
V6.01</A>) </LI></UL>
<H2>Questions and Bug Reports</H2>
<P>If you find bugs or you have problems with the code you cannot solve by
yourself, please contact me via <A
href="mailto:thorsten@joachims.org">email</A>. </P>
<H2>Disclaimer</H2>
<P>This software is free only for non-commercial use. It must not be distributed
without prior permission of the author. The author is not responsible for
implications from the use of this software. </P>
<H2>History</H2>
<H4>V6.00 - V6.01</H4>
<UL>
<LI>Small bug fixes in HIDEO optimizer. </LI></UL>
<H4>V5.00 - V6.00</H4>
<UL>
<LI>Allows restarts from a particular vector of dual variables (option y).
<LI>Time out for exceeding number of iterations without progress (option #).
<LI>Allows the use of Kernels for learning ranking functions.
<LI>Support for non-vectorial data like strings.
<LI>Improved robustness and convergence especially for regression problems.
<LI>Cleaned up code, which makes it easier to integrate it into other
programs.
<LI>Interface to SVM<I><SUP>struct</SUP></I>.
<LI>Source code for <A
href="http://www.cs.cornell.edu/People/tj/svm_light/old/svm_light_v5.00.html">SVM<I><SUP>light</I></SUP>
V5.00</A> </LI></UL>
<H4>V4.00 - V5.00</H4>
<UL>
<LI>Can now solve ranking problems in addition to classification and
regression.
<LI>Fixed bug in kernel cache that could lead to segmentation fault on some
platforms.
<LI>Fixed bug in transductive SVM that was introduced in version V4.00.
<LI>Improved robustness.
<LI>Source code for <A
href="http://www.cs.cornell.edu/People/tj/svm_light/old/svm_light_v4.00.html">SVM<I><SUP>light</I></SUP>
V4.00</A> </LI></UL>
<H4>V3.50 - V4.00</H4>
<UL>
<LI>Can now solve regression problems in addition to classification.
<LI>Bug fixes and improved numerical stability.
<LI>Source code for <A
href="http://www.cs.cornell.edu/People/tj/svm_light/old/svm_light_v3.50.html">SVM<I><SUP>light</I></SUP>
V3.50</A> </LI></UL>
<H4>V3.02 - V3.50</H4>
<UL>
<LI>Computes XiAlpha estimates of the error rate, the precision, and the
recall.
<LI>Efficiently computes Leave-One-Out estimates of the error rate, the
precision, and the recall.
<LI>Improved Hildreth and D'Espo optimizer especially for low-dimensional data
sets.
<LI>Easier to link into other C and C++ code. Easier compilation under
Windows.
<LI>Faster classification of new examples for linear SVMs. </LI></UL>
<H4>V3.01 - V3.02</H4>
<UL>
<LI>Now examples can be read in correctly on SGIs. </LI></UL>
<H4>V3.00 - V3.01</H4>
<UL>
<LI>Fixed convergence bug for Hildreth and D'Espo solver. </LI></UL>
<H4>V2.01 - V3.00</H4>
<UL>
<LI>Training algorithm for transductive Support Vector Machines.
<LI>Integrated core QP-solver based on the method of Hildreth and D'Espo.
<LI>Uses folding in the linear case, which speeds up linear SVM training by an
order of magnitude.
<LI>Allows linear cost models.
<LI>Faster in general. </LI></UL>
<H4>V2.00 - V2.01</H4>
<UL>
<LI>Improved interface to PR_LOQO
<LI>Source code for <A
href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light_v2.01.eng.html">SVM<I><SUP>light</I></SUP>
V2.01</A> </LI></UL>
<H4>V1.00 - V2.00</H4>
<UL>
<LI>Learning is much faster especially for large training sets.
<LI>Working set selection based on steepest feasible descent.
<LI>"Shrinking" heuristic.
<LI>Improved caching.
<LI>New solver for intermediate QPs.
<LI>Lets you set the size of the cache in MB.
<LI>Simplified output format of svm_classify.
<LI>Data files may contain comments. </LI></UL>
<H4>V0.91 - V1.00</H4>
<UL>
<LI>Learning is more than 4 times faster.
<LI>Smarter caching and optimization.
<LI>You can define your own kernel function.
<LI>Lets you set the size of the cache.
<LI>VCdim is now estimated based on the radius of the support vectors.
<LI>The classification module is more memory efficient.
<LI>The f2c library is available from <A
href="ftp://ftp-ai.cs.uni-dortmund.de/pub/Users/thorsten/svm_light/f2c/">here</A>.
<LI>Adaptive precision tuning makes optimization more robust.
<LI>Includes some small bug fixes and is more robust.
<LI>Source code for <A
href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light_v1.00.eng.html">SVM<I><SUP>light</I></SUP>
V1.00</A> </LI></UL>
<H4>V0.9 - V0.91</H4>
<UL>
<LI>Fixed bug which appears for very small C. Optimization did not converge.
</LI></UL><A name=References></A>
<H2>References</H2>
<TABLE cellSpacing=0 cellPadding=5 border=0>
<TBODY>
<TR>
<TD vAlign=top width="34%">
<P>[Joachims, 2002a]</P></TD>
<TD vAlign=top width="66%">
<P>Thorsten Joachims, <A
href="http://textclassification.joachims.org/"><I>Learning to Classify
Text Using Support Vector Machines</I></A>. Dissertation, Kluwer,
2002.<BR>[<A
href="http://search.barnesandnoble.com/booksearch/isbninquiry.asp?isbn=079237679X">B&N</A>]
[<A href="http://www.amazon.com/exec/obidos/ASIN/079237679X">Amazon</A>]
[<A href="http://www.wkap.nl/prod/b/0-7923-7679-X">Kluwer</A>] </P></TD></TR>
<TR>
<TD vAlign=top width="34%">[Joachims, 2002c]</TD>
<TD vAlign=top width="66%"><SPAN lang=EN-GB
style="mso-ansi-language: EN-GB">T. Joachims, <I>Optimizing Search Engines
Using Clickthrough Data</I>, Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD), ACM, 2002.<BR></SPAN><A
href="http://www.joachims.org/publications/joachims_02c.ps.gz"><SPAN
lang=EN-GB style="mso-ansi-language: EN-GB">Online
[Postscript]</SPAN></A><SPAN lang=EN-GB style="mso-ansi-language: EN-GB">
</SPAN><A
href="http://www.joachims.org/publications/joachims_02c.pdf"><SPAN
lang=EN-GB style="mso-ansi-language: EN-GB">[PDF]</SPAN></A><SPAN
lang=EN-GB style="mso-ansi-language: EN-GB"> </SPAN></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Klinkenberg, Joachims, 2000a]</P></TD>
<TD vAlign=top width="66%">
<P>R. Klinkenberg and T. Joachims, <I>Detecting Concept Drift with Support
Vector Machines</I>. Proceedings of the Seventeenth International
Conference on Machine Learning (ICML), Morgan Kaufmann, 2000. <BR><A
href="http://www.joachims.org/publications/klinkenberg_joachims_2000a.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/klinkenberg_joachims_2000a.pdf.gz"
target=_top>[PDF (gz)]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Joachims, 2000b]</P></TD>
<TD vAlign=top width="66%">
<P>T. Joachims, <I>Estimating the Generalization Performance of a SVM
Efficiently</I>. Proceedings of the International Conference on Machine
Learning, Morgan Kaufman, 2000. <BR><A
href="http://www.joachims.org/publications/joachims_00a.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/joachims_00a.pdf"
target=_top>[PDF]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Joachims, 1999a]</P></TD>
<TD vAlign=top width="66%">
<P>T. Joachims, 11 in: <I>Making large-Scale SVM Learning Practical</I>.
Advances in Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C.
Burges and A. Smola (ed.), MIT Press, 1999. <BR><A
href="http://www.joachims.org/publications/joachims_99a.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/joachims_99a.pdf"
target=_top>[PDF]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Joachims, 1999c]</P></TD>
<TD vAlign=top width="66%">
<P>Thorsten Joachims, <I>Transductive Inference for Text Classification
using Support Vector Machines</I>. International Conference on Machine
Learning (ICML), 1999. <BR><A
href="http://www.joachims.org/publications/joachims_99c.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/joachims_99c.pdf"
target=_top>[PDF]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Morik et al., 1999a]</P></TD>
<TD vAlign=top width="66%">
<P>K. Morik, P. Brockhausen, and T. Joachims, <I>Combining statistical
learning with a knowledge-based approach - A case study in intensive care
monitoring</I>. Proc. 16th Int'l Conf. on Machine Learning (ICML-99),
1999. <BR><A
href="http://www.joachims.org/publications/morik_etal_99a.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/morik_etal_99a.pdf"
target=_top>[PDF]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Joachims, 1998a]</P></TD>
<TD vAlign=top width="66%">
<P>T. Joachims, <I>Text Categorization with Support Vector Machines:
Learning with Many Relevant Features</I>. Proceedings of the European
Conference on Machine Learning, Springer, 1998. <BR><A
href="http://www.joachims.org/publications/joachims_98a.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/joachims_98a.pdf"
target=_top>[PDF]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Joachims, 1998c]</P></TD>
<TD vAlign=top width="66%">
<P>Thorsten Joachims, <I>Making Large-Scale SVM Learning Practical</I>.
LS8-Report, 24, Universit鋞 Dortmund, LS VIII-Report, 1998. <BR><A
href="http://www.joachims.org/publications/joachims_98c.ps.gz"
target=_top>Online [Postscript (gz)]</A> <A
href="http://www.joachims.org/publications/joachims_98c.pdf"
target=_top>[PDF]</A></P></TD></TR>
<TR>
<TD vAlign=top width="34%">
<P>[Vapnik, 1995a]</P></TD>
<TD vAlign=top width="66%">
<P>Vladimir N. Vapnik, <I>The Nature of Statistical Learning Theory</I>.
Springer, 1995.</P></TD></TR></TBODY></TABLE>
<H2>Other SVM Resources</H2>
<UL>
<LI><A href="http://www.first.gmd.de/" target=_top>GMD-First Berlin</A>
<LI><A href="http://www.kernel-machines.org/" target=_top>Kernel-Machines Web
Site</A>
<LI><A href="http://svm.research.bell-labs.com/" target=_top>Bell Labs</A>
<LI><A href="http://www.research.microsoft.com/~jplatt/svm.html"
target=_top>Microsoft Research</A>
<LI><A
href="http://www.dcs.rhbnc.ac.uk/research/compint/areas/comp_learn/sv/index.shtml"
target=_top>Royal Holloway College</A>
<LI><A href="http://wwwsyseng.anu.edu.au/lsg/" target=_top>ANU Canberra</A>
<LI><A
href="http://www.ai.mit.edu/projects/cbcl/res-area/theory/index-theory-learning.html"
target=_top>MIT</A>
<LI><A href="http://lara.enm.bris.ac.uk/cig/" target=_top>Bristol CI-Group</A>
</LI></UL>
<P>Last modified November 7th, 2007 by <A href="http://www.joachims.org/"
target=_top>Thorsten Joachims</A> <<A
href="mailto:thorsten@joachims.org">thorsten@joachims.org</A>></P></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -