⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm_light.htm

📁 本程序用于分类两类数据
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0046)http://www.cs.cornell.edu/People/tj/svm_light/ -->
<HTML><HEAD><TITLE>SVM-Light Support Vector Machine</TITLE>
<META http-equiv=Content-Type content="text/html; charset=windows-1252">
<META content="MSHTML 6.00.6000.16674" name=GENERATOR>
<META content=8.0.3514 name=Version>
<META content=11/26/96 name=Date>
<META content="C:\Programme\Microsoft Office\Office\HTML.DOT" 
name=Template></HEAD>
<BODY vLink=#800080 link=#0000ff bgColor=#ffffff>
<TABLE cellSpacing=0 cellPadding=5 border=0>
  <TBODY>
  <TR>
    <TD vAlign=top width="14%">
      <H2><A href="http://www-ai.cs.uni-dortmund.de/" target=_top><IMG height=81 
      src="svm_light_files/eier_graybg.gif" width=100 border=0></A></H2></TD>
    <TD vAlign=top width="75%">
      <H1 align=center>SVM<I><SUP>light</SUP> </H1></I>
      <H1 align=center>Support Vector Machine</H1>
      <P align=center>Author: <A href="http://www.joachims.org/" 
      target=_top>Thorsten Joachims</A> &lt;<A 
      href="mailto:thorsten@joachims.org">thorsten@joachims.org</A>&gt; <BR><A 
      href="http://www.cornell.edu/" target=_top>Cornell University</A> <BR><A 
      href="http://www.cs.cornell.edu/" target=_top>Department of Computer 
      Science</A> </P>
      <P align=center>Developed at: <BR><A href="http://www.uni-dortmund.de/" 
      target=_top>University of Dortmund</A>, <A 
      href="http://www.informatik.uni-dortmund.de/" target=_top>Informatik</A>, 
      <A href="http://www-ai.informatik.uni-dortmund.de/" 
      target=_top>AI-Unit</A> <BR><A href="http://www.sfb475.uni-dortmund.de/" 
      target=_top>Collaborative Research Center on 'Complexity Reduction in 
      Multivariate Data' (SFB475)</A> </P>
      <P align=center>Version: 6.01 <BR>Date: 02.09.2004</P></TD>
    <TD vAlign=top width="11%">
      <H2><IMG height=80 src="svm_light_files/culogo_125.gif" 
  width=80></H2></TD></TR></TBODY></TABLE>
<H2>Overview</H2>
<P>SVM<I><SUP>light</I></SUP> is an implementation of Support Vector Machines 
(SVMs) in C. The main features of the program are the following: </P>
<UL>
  <LI>fast optimization algorithm 
  <UL>
    <LI>working set selection based on steepest feasible descent 
    <LI>"shrinking" heuristic 
    <LI>caching of kernel evaluations 
    <LI>use of folding in the linear case </LI></UL>
  <LI>solves classification and regression problems. For multivariate and 
  structured outputs use <A 
  href="http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html">SVM<I><SUP>struct</I></SUP></A>. 

  <LI>solves ranking problems (e. g. learning retrieval functions in <A 
  href="http://striver.joachims.org/"><I>STRIVER</I></A> search engine). 
  <LI>computes XiAlpha-estimates of the error rate, the precision, and the 
  recall 
  <LI>efficiently computes Leave-One-Out estimates of the error rate, the 
  precision, and the recall 
  <LI>includes algorithm for approximately training large transductive SVMs 
  (TSVMs) (see also <A href="http://sgt.joachims.org/">Spectral Graph 
  Transducer</A>) 
  <LI>can train SVMs with cost models and example dependent costs 
  <LI>allows restarts from specified vector of dual variables 
  <LI>handles many thousands of support vectors 
  <LI>handles several hundred-thousands of training examples 
  <LI>supports standard kernel functions and lets you define your own 
  <LI>uses sparse vector representation </LI></UL>
<P><IMG height=16 src="svm_light_files/new.gif" width=32 border=0> <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html">SVM<I><SUP>struct</I></SUP></A>: 
SVM learning for multivariate and structured outputs like trees, sequences, and 
sets (available <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html">here</A>).</P>
<P><IMG height=16 src="svm_light_files/new.gif" width=32 border=0> <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html">SVM<SUP><I>perf</I></SUP></A>: 
New training algorithm for linear classification SVMs that can be much faster 
than SVM<SUP><I>light</I></SUP> for large datasets. It also lets you direcly 
optimize multivariate performance measures like F1-Score, ROC-Area, and the 
Precision/Recall Break-Even Point. (available <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html">here</A>).</P>
<H2>Description</H2>
<P>SVM<I><SUP>light</I></SUP> is an implementation of Vapnik's Support Vector 
Machine [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Vapnik, 
1995</A>] for the problem of pattern recognition, for the problem of regression, 
and for the problem of learning a ranking function. The optimization algorithms 
used in SVM<I><SUP>light</I></SUP>&nbsp;are described in [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
2002a</A> ]. [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
1999a</A>]. The algorithm has scalable memory requirements and can handle 
problems with many thousands of support vectors efficiently. </P>
<P>The software also provides methods for assessing the generalization 
performance efficiently. It includes two efficient estimation methods for both 
error rate and precision/recall. XiAlpha-estimates [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
2002a</A>, <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
2000b</A>] can be computed at essentially no computational expense, but they are 
conservatively biased. Almost unbiased estimates provides leave-one-out testing. 
SVM<I><SUP>light</I></SUP> exploits that the results of most leave-one-outs 
(often more than 99%) are predetermined and need not be computed [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
2002a</A>].</P>
<P>New in this version is an algorithm for learning ranking functions [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
2002c</A>]. The goal is to learn a function from preference examples, so that it 
orders a new set of objects as accurately as possible. Such ranking problems 
naturally occur in applications like search engines and recommender systems.</P>
<P>Futhermore, this version includes an algorithm for training large-scale 
transductive SVMs. The algorithm proceeds by solving a sequence of optimization 
problems lower-bounding the solution using a form of local search. A detailed 
description of the algorithm can be found in [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
1999c</A>]. A similar transductive learner, which can be thought of as a 
transductive version of k-Nearest Neighbor is the <A 
href="http://sgt.joachims.org/">Spectral Graph Transducer</A>. </P>
<P>SVM<I><SUP>light</I></SUP> can also train SVMs with cost models (see [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Morik et al., 
1999</A>]).</P>
<P>The code has been used on a large range of problems, including text 
classification [<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
1999c</A>][<A 
href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 
1998a</A>], image recognition tasks, bioinformatics and medical applications. 
Many tasks have the property of sparse instance vectors. This implementation 
makes use of this property which leads to a very compact and efficient 
representation.</P>
<H2>Source Code and Binaries</H2>
<P>The program is free for scientific use. Please contact me, if you are 
planning to use the software for commercial purposes. The software must not be 
further distributed without prior permission of the author. If you use 
SVM<I><SUP>light</I></SUP> in your scientific work, please cite as </P>
<UL>
  <LI>T. Joachims, Making large-Scale SVM Learning Practical. Advances in Kernel 
  Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and A. Smola 
  (ed.), MIT-Press, 1999. <BR><A 
  href="http://www.joachims.org/publications/joachims_99a.pdf" 
  target=_top>[PDF]</A><A 
  href="http://www.joachims.org/publications/joachims_99a.ps.gz" 
  target=_top>[Postscript (gz)]</A> </LI></UL>
<P>I would also appreciate, if you sent me (a link to) your papers so that I can 
learn about your research. The implementation was developed on Solaris 2.5 with 
gcc, but compiles also on SunOS 3.1.4, Solaris 2.7, Linux, IRIX, Windows NT, and 
Powermac (after small modifications, see <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/svm_light_faq.html">FAQ</A>). 
The source code is available at the following location: </P>
<DIR>
<P><A href="http://download.joachims.org/svm_light/current/svm_light.tar.gz" 
target=_top>http://download.joachims.org/svm_light/current/svm_light.tar.gz</A></P></DIR>
<P>If you just want the binaries, you can download them for the following 
systems:</P>
<UL>
  <LI>Solaris: <A 
  href="http://download.joachims.org/svm_light/current/svm_light_solaris.tar.gz" 
  target=_top>http://download.joachims.org/svm_light/current/svm_light_solaris.tar.gz</A> 

  <LI>Windows: <A 
  href="http://download.joachims.org/svm_light/current/svm_light_windows.zip" 
  target=_top>http://download.joachims.org/svm_light/current/svm_light_windows.zip</A> 

  <LI>Cygwin: <A 
  href="http://download.joachims.org/svm_light/current/svm_light_cygwin.tar.gz" 
  target=_top>http://download.joachims.org/svm_light/current/svm_light_cygwin.tar.gz</A> 

  <LI>Linux: <A 
  href="http://download.joachims.org/svm_light/current/svm_light_linux.tar.gz" 
  target=_top>http://download.joachims.org/svm_light/current/svm_light_linux.tar.gz</A> 
  </LI></UL>
<P><A href="mailto:thorsten@joachims.org">Please send me email</A> and let me 
know that you got svm-light. I will put you on my mailing list to inform you 
about new versions and bug-fixes. SVM<I><SUP>light</I></SUP> comes with a 
quadratic programming tool for solving small intermediate quadratic programming 
problems. It is based on the method of Hildreth and D'Espo and solves small 
quadratic programs very efficiently. Nevertheless, if for some reason you want 
to use another solver, the new version still comes with an interface to PR_LOQO. 
The <A href="http://www.first.gmd.de/~smola/" target=_top>PR_LOQO optimizer</A> 
was written by <A href="http://www.first.gmd.de/~smola/" target=_top>A. 
Smola</A>. It can be requested from <A 
href="http://www.kernel-machines.org/code/prloqo.tar.gz" 
target=_top>http://www.kernel-machines.org/code/prloqo.tar.gz</A>. </P>
<H2>Installation</H2>
<P>To install SVM<I><SUP>light</I></SUP> you need to download 
<TT>svm_light.tar.gz</TT>. Create a new directory:</P>
<DIR><TT>
<P>mkdir svm_light</P></TT></DIR>
<P>Move <TT>svm_light.tar.gz</TT> to this directory and unpack it with </P>
<DIR><TT>
<P>gunzip -c svm_light.tar.gz | tar xvf -</P></TT></DIR>
<P>Now execute </P>
<DIR><TT>
<P>make or make all</P></TT></DIR>
<P>which compiles the system and creates the two executables </P>
<DIR><TT>svm_learn (learning module)</TT><BR><TT>svm_classify (classification 
module)</TT> </DIR>
<P>If you do not want to use the built-in optimizer but PR_LOQO instead, create 
a subdirectory in the svm_light directory with </P>
<DIR><TT>
<P>mkdir pr_loqo</P></TT></DIR>
<P>and copy the files <TT>pr_loqo.c</TT> and <TT>pr_loqo.h</TT> in there. Now 
execute </P>
<DIR><TT>
<P>make svm_learn_loqo</P></TT></DIR>
<P>If the system does not compile properly, check this <A 
href="http://www.cs.cornell.edu/People/tj/svm_light/svm_light_faq.html">FAQ</A>.</P>
<H2>How to use</H2>
<P>This section explains how to use the SVM<I><SUP>light</I></SUP> software. A 
good introduction to the theory of SVMs is Chris Burges' <A 
href="http://www.kernel-machines.org/papers/Burges98.ps.gz" 
target=_top>tutorial</A>. </P>
<P>SVM<I><SUP>light</I></SUP> consists of a learning module (<TT>svm_learn</TT>) 
and a classification module (<TT>svm_classify</TT>). The classification module 
can be used to apply the learned model to new examples. See also the examples 
below for how to use <TT>svm_learn</TT> and <TT>svm_classify</TT>. </P><TT>
<P>svm_learn</TT> is called with the following parameters:</P>
<DIR><TT>
<P>svm_learn [options] example_file model_file</P></TT></DIR>
<P>Available options are: </P>
<DIR><PRE>General options:
         -?          - this help
         -v [0..3]   - verbosity level (default 1)
Learning options:
         -z {c,r,p}  - select between classification (c), regression (r), and 
                       preference ranking (p) (see [<A href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 2002c</A>])
                       (default classification)          
         -c float    - C: trade-off between training error
                       and margin (default [avg. x*x]^-1)
         -w [0..]    - epsilon width of tube for regression
                       (default 0.1)
         -j float    - Cost: cost-factor, by which training errors on
                       positive examples outweight errors on negative
                       examples (default 1) (see [<A href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Morik et al., 1999</A>])
         -b [0,1]    - use biased hyperplane (i.e. x*w+b0) instead
                       of unbiased hyperplane (i.e. x*w0) (default 1)
         -i [0,1]    - remove inconsistent training examples
                       and retrain (default 0)
Performance estimation options:
         -x [0,1]    - compute leave-one-out estimates (default 0)
                       (see [5])
         -o ]0..2]   - value of rho for XiAlpha-estimator and for pruning
                       leave-one-out computation (default 1.0) 
                       (see [<A href="http://www.cs.cornell.edu/People/tj/svm_light/#References">Joachims, 2002a</A>])
         -k [0..100] - search depth for extended XiAlpha-estimator
                       (default 0)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -