📄 update_e_from_d.cpp
字号:
/* Copyright (C) 2005-2008 Massachusetts Institute of Technology%% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2, or (at your option)% any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software Foundation,% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.*/#include <string.h>#include "meep.hpp"#include "meep_internals.hpp"namespace meep { void fields::update_e_from_d() { for (int i=0;i<num_chunks;i++) if (chunks[i]->is_mine()) { src_vol *save_e_sources = chunks[i]->d_sources; if (disable_sources) chunks[i]->d_sources = NULL; // temporary chunks[i]->update_e_from_d(); chunks[i]->d_sources = save_e_sources; }}void fields_chunk::update_e_from_d() { bool have_int_sources = false; for (src_vol *sv = d_sources; sv; sv = sv->next) if (sv->t->is_integrated) { have_int_sources = true; break; } FOR_D_COMPONENTS(dc) DOCMP { if (f[dc][cmp] && (pol || have_int_sources)) { if (!f_minus_p[dc][cmp]) f_minus_p[dc][cmp] = new double[v.ntot()]; } else if (f_minus_p[dc][cmp]) { // remove unneeded f_minus_p delete[] f_minus_p[dc][cmp]; f_minus_p[dc][cmp] = 0; } } bool have_d_minus_p = false; FOR_D_COMPONENTS(dc) if (f_minus_p[dc][0]) { have_d_minus_p = true; break; } const int ntot = s->v.ntot(); ////////////////////////////////////////////////////////////////////////// // First, initialize f_minus_p to D - P, if necessary if (have_d_minus_p) { if (pol) { FOR_E_AND_D(ec,dc) if (f[ec][0]) { for (polarization *np=pol,*op=olpol; np; np=np->next,op=op->next) { if (np->energy[ec] && op->energy[ec]) { if (is_real) for (int i = 0; i < ntot; ++i) { np->energy[ec][i] = op->energy[ec][i] + (0.5)*(np->P[ec][0][i] - op->P[ec][0][i]) * f[ec][0][i]; } else for (int i = 0; i < ntot; ++i) { np->energy[ec][i] = op->energy[ec][i] + (0.5)*(np->P[ec][0][i] - op->P[ec][0][i]) * f[ec][0][i] + (0.5)*(np->P[ec][1][i] - op->P[ec][1][i]) * f[ec][1][i]; } } } DOCMP { for (int i=0;i<ntot;i++) { double sum = f[dc][cmp][i]; for (polarization *p = pol; p; p = p->next) { sum -= p->P[ec][cmp][i]; } f_minus_p[dc][cmp][i] = sum; } } } } else { FOR_D_COMPONENTS(dc) if (f[dc][0]) DOCMP memcpy(f_minus_p[dc][cmp], f[dc][cmp], ntot * sizeof(double)); } } ////////////////////////////////////////////////////////////////////////// // Next, subtract time-integrated sources (i.e. polarizations, not currents) if (have_d_minus_p) { for (src_vol *sv = d_sources; sv; sv = sv->next) { if (sv->t->is_integrated && f[sv->c][0] && is_electric(sv->c)) { component c = direction_component(Dx, component_direction(sv->c)); for (int j = 0; j < sv->npts; ++j) { const complex<double> A = sv->dipole(j); DOCMP { f_minus_p[c][cmp][sv->index[j]] -= (cmp) ? imag(A) : real(A); } } } } } ////////////////////////////////////////////////////////////////////////// // Finally, compute E = inveps * D double *dmp[NUM_FIELD_COMPONENTS][2]; if (have_d_minus_p) { FOR_E_AND_D(ec,dc) DOCMP2 dmp[ec][cmp] = f_minus_p[dc][cmp]; } else { FOR_E_AND_D(ec,dc) DOCMP2 dmp[ec][cmp] = f[dc][cmp]; } DOCMP FOR_E_AND_D(ec,dc) if (f[ec][cmp]) { const direction d_ec = component_direction(ec); const int s_ec = stride_any_direction[d_ec]; const direction d_1 = cycle_direction(v.dim, d_ec, 1); const component ec_1 = direction_component(ec,d_1); const int s_1 = stride_any_direction[d_1]; const direction d_2 = cycle_direction(v.dim, d_ec, 2); const component ec_2 = direction_component(ec,d_2); const int s_2 = stride_any_direction[d_2]; component dc_1 = direction_component(dc,d_1); component dc_2 = direction_component(dc,d_2); direction dsig = d_2; direction dsigg = d_ec; direction dsig1 = d_1; direction dsig1inv = d_ec; direction dsig2 = d_2; direction dsig2inv = d_1; step_update_EDHB(f[ec][cmp], ec, v, dmp[ec][cmp], dmp[ec_1][cmp], dmp[ec_2][cmp], f_prev[dc][cmp], f_prev[dc_1][cmp], f_prev[dc_2][cmp], s->inveps[ec][d_ec], dmp[ec_1][cmp]?s->inveps[ec][d_1]:NULL, dmp[ec_2][cmp]?s->inveps[ec][d_2]:NULL, s_ec, s_1, s_2, s->chi2[ec], s->chi3[ec], dsig, s->sig[dsig], s->siginv[dsig], dsigg, s->sig[dsigg], dsig1, s->sig[dsig1], dsig1inv, s->sig[dsig1inv], dsig2, s->sig[dsig2], dsig2inv, s->sig[dsig2inv], s->sigsize[dsig],s->sigsize[dsigg],s->sigsize[dsig1]); } /* Do annoying special cases for r=0 in cylindrical coords. Note that this only really matters for field output; the Ez and Ep components at r=0 don't usually affect the fields elsewhere because of the form of Maxwell's equations in cylindrical coords. */ // (FIXME: handle Kerr case?). if (v.dim == Dcyl && v.origin_r() == 0.0) DOCMP FOR_E_AND_D(ec,dc) if (f[ec][cmp] && ec != Er) { const int yee_idx = v.yee_index(ec); const int d_ec = component_direction(ec); const int sR = stride_any_direction[R]; const double *D = have_d_minus_p ? f_minus_p[dc][cmp] : f[dc][cmp]; for (int iZ=0; iZ<num_any_direction[Z]; iZ++) { const int i = yee_idx + iZ - sR; f[ec][cmp][i] = s->inveps[ec][d_ec][i] * D[i]; } }}} // namespace meep
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -