📄 symmetry.cpp
字号:
/* Copyright (C) 2005-2008 Massachusetts Institute of Technology %% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2, or (at your option)% any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software Foundation,% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.*/#include <stdio.h>#include <stdlib.h>#include <signal.h>#include <meep.hpp>using namespace meep;const char *mydirname = "symmetry-out";double one(const vec &) { return 1.0; }vec the_center;double rods_2d(const vec &pp) { vec p = pp - the_center; while (p.x() > 0.5) p -= vec(1.0,0); while (p.x() <-0.5) p += vec(1.0,0); while (p.y() > 0.5) p -= vec(0,1.0); while (p.y() <-0.5) p += vec(0,1.0); if (fabs(p.x()) < 0.314) return 12.0; if (fabs(p.y()) < 0.314) return 12.0; return 1.0;}static double eps_compare = 1e-9;static double thresh_compare = 1e-15;static inline double max(double a, double b) { return a > b ? a : b; }int compare(double a, double b, const char *n) { if (fabs(a-b) > fabs(b)*eps_compare && max(fabs(a),fabs(b)) > thresh_compare) { master_printf("%s differs by\t%g out of\t%g\n", n, a-b, b); master_printf("This gives a fractional error of %g\n", fabs(a-b)/fabs(b)); return 0; } else { return 1; }}int compare_point(fields &f1, fields &f2, const vec &p) { monitor_point m1, m_test; f1.get_point(&m_test, p); f2.get_point(&m1, p); for (int i=0;i<10;i++) { component c = (component) i; if (f1.v.has_field(c)) { complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c); if (abs(v1 - v2) > eps_compare*abs(v2) && abs(v2) > thresh_compare) { master_printf("%s differs: %g %g out of %g %g\n", component_name(c), real(v2-v1), imag(v2-v1), real(v2), imag(v2)); master_printf("This comes out to a fractional error of %g\n", abs(v1 - v2)/abs(v2)); master_printf("Right now I'm looking at "); LOOP_OVER_DIRECTIONS(p.dim,d) master_printf("%s = %g, ", direction_name(d), p.in_direction(d)); master_printf("time %g\n", f1.time()); return 0; } } } return 1;}void check_unequal_layout(const fields &f1, const fields &f2){ if (f1.equal_layout(f2) || !f1.equal_layout(f1) || !f2.equal_layout(f2)) abort("fields::equal_layout did not return expected result");}int test_cyl_metal_mirror(double eps(const vec &)) { master_printf("Testing Z mirror symmetry in Cylindrical...\n"); double a = 8.0; double ttot = 3.0; const volume v = volcyl(1.0, 1.0, a); the_center = v.center(); const symmetry S = mirror(Z,v); structure s(v, eps, no_pml(), S); structure s1(v, eps); fields f1(&s1); f1.add_point_source(Er, 0.7, 2.5, 0.0, 4.0, veccyl(0.5,0.5)); f1.add_point_source(Ep, 0.8, 0.6, 0.0, 4.0, veccyl(0.401,0.5)); fields f(&s); f.add_point_source(Er, 0.7, 2.5, 0.0, 4.0, veccyl(0.5,0.5)); f.add_point_source(Ep, 0.8, 0.6, 0.0, 4.0, veccyl(0.401,0.5)); check_unequal_layout(f, f1); double total_energy_check_time = 1.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, veccyl(0.01, 0.5 ))) return 0; if (!compare_point(f, f1, veccyl(0.21, 0.5 ))) return 0; if (!compare_point(f, f1, veccyl(0.501, 0.5 ))) return 0; if (!compare_point(f, f1, veccyl(0.33, 0.46 ))) return 0; if (!compare_point(f, f1, veccyl(0.2, 0.2 ))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; total_energy_check_time += 1.0; } } return 1;}int test_cyl_metal_mirror_nonlinear(double eps(const vec &)) { master_printf("Testing Z mirror symmetry in Cylindrical...\n"); double a = 16.0; double ttot = 3.0; const volume v = volcyl(1.0, 1.0, a); the_center = v.center(); const symmetry S = mirror(Z,v); structure s(v, eps, no_pml(), S); structure s1(v, eps); s.set_chi3(one); s1.set_chi3(one); fields f1(&s1); f1.add_point_source(Er, 0.7, 2.5, 0.0, 4.0, veccyl(0.5,0.5)); // f1.add_point_source(Ep, 0.8, 0.6, 0.0, 4.0, veccyl(0.401,0.5)); fields f(&s); f.add_point_source(Er, 0.7, 2.5, 0.0, 4.0, veccyl(0.5,0.5)); // f.add_point_source(Ep, 0.8, 0.6, 0.0, 4.0, veccyl(0.401,0.5)); check_unequal_layout(f, f1); double total_energy_check_time = 1.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, veccyl(0.01, 0.5 ))) return 0; if (!compare_point(f, f1, veccyl(0.21, 0.5 ))) return 0; if (!compare_point(f, f1, veccyl(0.501, 0.5 ))) return 0; if (!compare_point(f, f1, veccyl(0.33, 0.46 ))) return 0; if (!compare_point(f, f1, veccyl(0.2, 0.2 ))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; total_energy_check_time += 1.0; } } return 1;}int test_1d_periodic_mirror(double eps(const vec &)) { master_printf("Testing Z mirror symmetry in 1D...\n"); double a = 16.0; double ttot = 3.0; const volume v = volone(1.0, a); the_center = v.center(); const symmetry S = mirror(Z,v); structure s(v, eps, no_pml(), S); structure s1(v, eps); fields f1(&s1); f1.use_bloch(0.0); f1.add_point_source(Ex, 0.7, 2.5, 0.0, 4.0, vec(0.5)); fields f(&s); f.use_bloch(0.0); f.add_point_source(Ex, 0.7, 2.5, 0.0, 4.0, vec(0.5)); check_unequal_layout(f, f1); double total_energy_check_time = 1.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, vec(0.01))) return 0; if (!compare_point(f, f1, vec(0.33))) return 0; if (!compare_point(f, f1, vec(0.50))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; total_energy_check_time += 1.0; } } return 1;}int test_origin_shift(void) { master_printf("Testing origin shift in 2D...\n"); double a = 8.0; double ttot = 3.0; const volume v = voltwo(1.0, 1.0, a); volume vcentered = v; vcentered.shift_origin(-v.center()); structure s(vcentered, one); structure s1(v, one); fields f1(&s1); fields f(&s); f1.add_point_source(Ey, 0.7, 2.5, 0.0, 4.0, v.center()); f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, v.center()); f.add_point_source(Ey, 0.7, 2.5, 0.0, 4.0, vec(0.0,0.0)); f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.0,0.0)); check_unequal_layout(f, f1); while (f.time() < ttot) { f.step(); f1.step(); if (!compare(f.total_energy(), f1.total_energy(), " total energy")) { master_printf("Time is %g\n", f.time()); return 0; } } return 1;}int test_metal_xmirror(double eps(const vec &)) { master_printf("Testing X mirror symmetry...\n"); double a = 8.0; double ttot = 3.0; const volume v = voltwo(1.0, 1.0, a); the_center = v.center(); const symmetry S = mirror(X,v); structure s(v, eps, no_pml(), S); structure s1(v, eps); fields f1(&s1); f1.add_point_source(Ey, 0.7, 2.5, 0.0, 4.0, vec(0.5,0.5)); f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.5,0.401)); fields f(&s); f.add_point_source(Ey, 0.7, 2.5, 0.0, 4.0, vec(0.5,0.5)); f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.5,0.401)); check_unequal_layout(f, f1); double total_energy_check_time = 1.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, vec(0.5 , 0.01))) return 0; if (!compare_point(f, f1, vec(0.5 , 0.21))) return 0; if (!compare_point(f, f1, vec(0.5 , 0.501))) return 0; if (!compare_point(f, f1, vec(0.46 , 0.33))) return 0; if (!compare_point(f, f1, vec(0.2 , 0.2 ))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; total_energy_check_time += 1.0; } } return 1;}int test_3D_metal_xmirror(double eps(const vec &)) { double a = 8.0; double ttot = 3.0; const volume v = vol3d(1.0, 1.0, 1.0, a); const symmetry S = mirror(X,v); structure s(v, eps, no_pml(), S); structure s1(v, eps); master_printf("Testing X mirror symmetry in 3D...\n"); fields f1(&s1); f1.add_point_source(Ez, 0.7, 2.5, 0.0, 4.0, vec(0.5,0.51,0.55)); f1.add_point_source(Hx, 0.8, 0.6, 0.0, 4.0, vec(0.5,0.401,0.43)); fields f(&s); f.add_point_source(Ez, 0.7, 2.5, 0.0, 4.0, vec(0.5,0.51,0.55)); f.add_point_source(Hx, 0.8, 0.6, 0.0, 4.0, vec(0.5,0.401,0.43)); check_unequal_layout(f, f1); double total_energy_check_time = 1.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, vec(0.5 , 0.01 , 0.5))) return 0; if (!compare_point(f, f1, vec(0.5 , 0.21 , 0.5))) return 0; if (!compare_point(f, f1, vec(0.5 , 0.501, 0.5))) return 0; if (!compare_point(f, f1, vec(0.46 , 0.33 , 0.5))) return 0; if (!compare_point(f, f1, vec(0.2 , 0.2 , 0.5))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; total_energy_check_time += 1.0; } } return 1;}int test_3D_metal_zmirror(double eps(const vec &)) { double a = 8.0; double ttot = 3.0; const volume v = vol3d(1.1, 0.6, 1.0, a); const symmetry S = mirror(Z,v); structure s(v, eps, no_pml(), S); structure s1(v, eps); master_printf("Testing Z mirror symmetry in 3D...\n"); fields f1(&s1); f1.add_point_source(Ex, 0.7, 2.5, 0.0, 4.0, vec(0.55,0.51,0.5)); f1.add_point_source(Ey, 0.8, 0.6, 0.0, 4.0, vec(0.43,0.401,0.5)); fields f(&s); f.add_point_source(Ex, 0.7, 2.5, 0.0, 4.0, vec(0.55,0.51,0.5)); f.add_point_source(Ey, 0.8, 0.6, 0.0, 4.0, vec(0.43,0.401,0.5)); check_unequal_layout(f, f1); double total_energy_check_time = 1.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, vec(0.5 , 0.01 , 0.75))) return 0; if (!compare_point(f, f1, vec(0.5 , 0.21 , 0.15))) return 0; if (!compare_point(f, f1, vec(0.5 , 0.501, 0.5))) return 0; if (!compare_point(f, f1, vec(0.46 , 0.33 , 0.51))) return 0; if (!compare_point(f, f1, vec(0.2 , 0.2 , 0.05))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; total_energy_check_time += 1.0; } } return 1;}int test_3D_metal_odd_zmirror(double eps(const vec &)) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -