⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 analytic.f90

📁 Sfdtd Simple finite-difference time-domain
💻 F90
字号:
! analytic.f90!! Analytische Dipol Feldberechnung!!    Copyright (C) 2007  Paul Panserrieu, < peutetre@cs.tu-berlin.de >!!    This program is free software: you can redistribute it and/or modify!    it under the terms of the GNU General Public License as published by!    the Free Software Foundation, either version 3 of the License.! ! last modified: 25-10-2007 04:47:54 PM CESTMODULE analyticUSE fdtd_gitterIMPLICIT NONECONTAINS! return 1 if dipol is in this direction else 0INTEGER FUNCTION direction(d, komponent)  TYPE(dipol), INTENT(IN)                               :: d  INTEGER, INTENT(IN)                                   :: komponent  IF (d%E(komponent) .NE. 0.0d0) THEN    direction = 1  ELSE    direction = 0  ENDIFEND FUNCTION direction! distanz dipol <-> messzelle, |r|DOUBLE PRECISION FUNCTION r(g, d, messzelle)    TYPE(gitter), INTENT(IN)                              :: g  TYPE(dipol), INTENT(IN)                               :: d  INTEGER, DIMENSION(1:3), INTENT(IN)                   :: messzelle  r = SQRT(( g%dx * (messzelle(1) - d%px - 0.5d0 * direction(d, 1))) ** 2.0 &           +(g%dy * (messzelle(2) - d%py - 0.5d0 * direction(d, 2))) ** 2.0 &           +(g%dz * (messzelle(3) - d%pz - 0.5d0 * direction(d, 3))) ** 2.0)END FUNCTION r! components of vector rDOUBLE PRECISION FUNCTION rk(g, d, messzelle, k)    TYPE(gitter), INTENT(IN)                              :: g  TYPE(dipol), INTENT(IN)                               :: d  INTEGER, DIMENSION(1:3), INTENT(IN)                   :: messzelle  INTEGER, INTENT(IN)                                   :: k  IF (k .EQ. 1) THEN    rk = g%dx * (messzelle(1) - d%px - 0.5d0 * direction(d, 1))  ELSEIF (k .EQ. 2) THEN     rk = g%dy * (messzelle(2) - d%py - 0.5d0 * direction(d, 2))  ELSE    rk = g%dz * (messzelle(3) - d%pz - 0.5d0 * direction(d, 3))  ENDIF END FUNCTION rkSUBROUTINE stimulus(derivs, zelle, g, d, dipol_type, zt_E, zt_H)  DOUBLE PRECISION, INTENT(INOUT), DIMENSION(1:2,1:3)   :: derivs  INTEGER, INTENT(IN), DIMENSION(1:3)                   :: zelle  TYPE(gitter), INTENT(IN)                              :: g  TYPE(dipol), INTENT(IN)                               :: d  INTEGER, INTENT(IN)                                   :: dipol_type  DOUBLE PRECISION, INTENT(IN)                          :: zt_E, zt_H  SELECT CASE (dipol_type)    CASE(1)      CALL cosinusoidal(derivs, zelle, zt_E, zt_H, d, g)     CASE(2)      CALL sinusoidal(derivs, zelle, zt_E, zt_H, d, g)    CASE(3)      CALL mix(derivs, zelle, zt_E, zt_H, d, g)    CASE DEFAULT      WRITE(*,*) "Falscher 'dipol_type' in stimulus()"  END SELECTEND SUBROUTINE stimulusDOUBLE PRECISION FUNCTION cos_deriv_0 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  cos_deriv_0 = cos(d%omega * (zeit - (distanz/C)) + d%phi)  END FUNCTION cos_deriv_0DOUBLE PRECISION FUNCTION cos_deriv_1 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  cos_deriv_1 =  - d%omega *  sin(d%omega * (zeit - (distanz/C)) + d%phi)  END FUNCTION cos_deriv_1DOUBLE PRECISION FUNCTION cos_deriv_2 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  cos_deriv_2 = - (d%omega ** 2.0) * cos(d%omega * (zeit - (distanz/C)) + d%phi)  END FUNCTION cos_deriv_2SUBROUTINE cosinusoidal(derivs, zelle, zt_E, zt_H, d, g)  DOUBLE PRECISION, INTENT(INOUT), DIMENSION(1:2,1:3)   :: derivs  INTEGER, INTENT(IN), DIMENSION(1:3)                   :: zelle  DOUBLE PRECISION, INTENT(IN)                          :: zt_E, zt_H  TYPE(dipol), INTENT(IN)                               :: d  TYPE(gitter), INTENT(IN)                              :: g   DOUBLE PRECISION                                      :: ampl, fac  IF(zt_E >= r(g, d, zelle)/C) THEN    CALL find_ampl(d%E, ampl)    fac = EPS * 3.0d0 *(g%dx * g%dx) * ampl    derivs(1,1) = - fac * cos_deriv_0(d, zt_E, r(g, d, zelle))       derivs(1,2) = - fac * cos_deriv_1(d, zt_E, r(g, d, zelle))    derivs(1,3) = - fac * cos_deriv_2(d, zt_E, r(g, d, zelle))    derivs(2,1) = - fac * cos_deriv_0(d, zt_H, r(g, d, zelle))     derivs(2,2) = - fac * cos_deriv_1(d, zt_H, r(g, d, zelle))    derivs(2,3) = - fac * cos_deriv_2(d, zt_H, r(g, d, zelle))  ELSE    derivs = 0.0d0  ENDIFEND SUBROUTINE cosinusoidalDOUBLE PRECISION FUNCTION sin_deriv_0 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  sin_deriv_0 = sin(d%omega * (zeit - (distanz/C)) + d%phi)  END FUNCTION sin_deriv_0DOUBLE PRECISION FUNCTION sin_deriv_1 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  sin_deriv_1 = d%omega * cos(d%omega * (zeit - (distanz/C)) + d%phi)   END FUNCTION sin_deriv_1DOUBLE PRECISION FUNCTION sin_deriv_2 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  sin_deriv_2 = - d%omega * d%omega * sin(d%omega * (zeit - (distanz/C)) + d%phi)   END FUNCTION sin_deriv_2SUBROUTINE sinusoidal(derivs, zelle, zt_E, zt_H, d, g)  DOUBLE PRECISION, INTENT(INOUT), DIMENSION(1:2,1:3)   :: derivs  INTEGER, INTENT(IN), DIMENSION(1:3)                   :: zelle  DOUBLE PRECISION, INTENT(IN)                          :: zt_E, zt_H  TYPE(dipol), INTENT(IN)                               :: d  TYPE(gitter), INTENT(IN)                              :: g  DOUBLE PRECISION                                      :: ampl, fac  IF(zt_E >= r(g, d, zelle)/C) THEN    CALL find_ampl(d%E, ampl)    fac = EPS * 3.0d0 * (g%dx * g%dx) * ampl     derivs(1,1) = - fac * sin_deriv_0(d, zt_E, r(g, d, zelle))    derivs(1,2) = - fac * sin_deriv_1(d, zt_E, r(g, d, zelle))    derivs(1,3) = - fac * sin_deriv_2(d, zt_E, r(g, d, zelle))    derivs(2,1) = - fac * sin_deriv_0(d, zt_H, r(g, d, zelle))       derivs(2,2) = - fac * sin_deriv_1(d, zt_H, r(g, d, zelle))    derivs(2,3) = - fac * sin_deriv_2(d, zt_H, r(g, d, zelle))  ELSE    derivs = 0.0d0  ENDIFEND SUBROUTINE sinusoidalDOUBLE PRECISION FUNCTION mix_deriv_0 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  mix_deriv_0 =            SIN(d%omega * (zeit - (distanz/C)) + d%phi)       &                * (1.0d0 - COS(d%omega * (zeit - (distanz/C)) + d%phi))  END FUNCTION mix_deriv_0DOUBLE PRECISION FUNCTION mix_deriv_1 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  mix_deriv_1 = d%omega * (COS(d%omega * (zeit - (distanz/C)) + d%phi)                            &                         + SIN(d%omega * (zeit - (distanz/C)) + d%phi) ** 2.0                     &                         - COS(d%omega * (zeit - (distanz/C)) + d%phi) ** 2.0)  END FUNCTION mix_deriv_1DOUBLE PRECISION FUNCTION mix_deriv_2 (d, zeit, distanz)  TYPE(dipol), INTENT(IN)                               :: d  DOUBLE PRECISION, INTENT(IN)                          :: zeit  DOUBLE PRECISION, INTENT(IN)                          :: distanz  mix_deriv_2 = (d%omega ** 2.0) * SIN(d%omega * (zeit - (distanz/C)) + d%phi)          &                        * (4.0d0 * COS(d%omega * (zeit - (distanz/C)) + d%phi) - 1.0d0)  END FUNCTION mix_deriv_2SUBROUTINE mix(derivs, zelle, zt_E, zt_H, d, g)  DOUBLE PRECISION, INTENT(INOUT), DIMENSION(1:2,1:3)   :: derivs  INTEGER, INTENT(IN), DIMENSION(1:3)                   :: zelle  DOUBLE PRECISION, INTENT(IN)                          :: zt_E, zt_H  TYPE(dipol), INTENT(IN)                               :: d     TYPE(gitter), INTENT(IN)                              :: g    DOUBLE PRECISION                                      :: ampl, fac  IF(zt_E >= r(g, d, zelle)/C) THEN    CALL find_ampl(d%E, ampl)    fac = ampl * EPS * 3.0d0 *(g%dx * g%dx)    derivs(1,1) = - fac * mix_deriv_0(d, zt_E, r(g, d, zelle))    derivs(1,2) = - fac * mix_deriv_1(d, zt_E, r(g, d, zelle))    derivs(1,3) = - fac * mix_deriv_2(d, zt_E, r(g, d, zelle))    derivs(2,1) = - fac * mix_deriv_0(d, zt_H, r(g, d, zelle))     derivs(2,2) = - fac * mix_deriv_1(d, zt_H, r(g, d, zelle))    derivs(2,3) = - fac * mix_deriv_2(d, zt_H, r(g, d, zelle))  ELSE    derivs = 0.0d0  ENDIFEND SUBROUTINE mixSUBROUTINE feldberechnung(f, s, zelle, zt_E, d, g)    DOUBLE PRECISION, INTENT(INOUT), DIMENSION(1:6)    :: f               ! Feld array  DOUBLE PRECISION, INTENT(IN), DIMENSION(1:2,1:3)   :: s               ! Stimulus  INTEGER, INTENT(IN), DIMENSION(1:3)                :: zelle           ! zelle  DOUBLE PRECISION, INTENT(IN)                       :: zt_E            ! Zeit_E  TYPE(dipol), INTENT(IN)                            :: d               ! Dipolstruktur  TYPE(gitter), INTENT(IN)                           :: g  INTEGER                                            :: pos1, pos2, pos3, pos, i  pos1 = 1; pos2 = 2; pos3 = 3  IF (zt_E >= r(g, d, zelle)/C) THEN    pos = direction(d, 1) +  2 * direction(d, 2) + 3 * direction(d, 3)    IF (pos .EQ. pos1) THEN      CALL permut(pos1, 1)      CALL permut(pos2, 1)      CALL permut(pos3, 1)    ELSEIF(pos .EQ. pos2) THEN      CALL permut(pos1, -1)      CALL permut(pos2, -1)      CALL permut(pos3, -1)    ENDIF    ! Ex, Ey, Ez    f(pos1) = g%dx * rk(g, d, zelle, 1) * rk(g, d, zelle, 3)                 &                   / (4.0d0 * PI * EPS * r(g, d, zelle) ** 5.0)              &                  * ( 3.0d0 * (s(1,1) + (r(g, d, zelle)/C) * s(1,2))         &                  + (r(g, d, zelle)/C)**2.0 * s(1,3) )    f(pos2) = g%dx * rk(g, d, zelle, 2) * rk(g, d, zelle, 3)                 &                    / (4.0d0 * PI * EPS * r(g, d, zelle) ** 5.0)             &                  * ( 3.0d0 * (s(1,1) + (r(g, d, zelle)/C) * s(1,2))         &                  + (r(g, d, zelle)/C)**2.0 * s(1,3) )        f(pos3) = g%dx / (4.0d0 * PI * EPS * r(g, d, zelle) ** 5)                &                * ( ( 2.0d0 * rk(g, d, zelle, 3) ** 2.0                      &                    - (rk(g, d, zelle, 1)**2.0 + rk(g, d, zelle, 2) ** 2.0)  &                    ) * (s(1,1) + (r(g, d, zelle)/C) * s(1,2))               &                    - (rk(g, d, zelle, 1)**2.0 + rk(g, d, zelle, 2) ** 2.0)  &                      * (r(g, d, zelle)/C) ** 2.0 * s(1,3) )                                                                  ! Hx, Hy, Hz    f(pos1+3) = - g%dx * rk(g, d, zelle, 2)                                  &                / (4.0d0 * PI * r(g, d, zelle) ** 3.0)                       &                * (s(2,2) + (r(g, d, zelle)/C) * s(2,3))    f(pos2+3) = g%dx * rk(g, d, zelle, 1)                                    &                / (4.0d0 * PI * r(g, d, zelle) ** 3.0)                       &                * (s(2,2) + (r(g, d, zelle)/C) * s(2,3))    f(pos3+3) = 0.0d0  ELSE    f = 0.0d0  ENDIFEND SUBROUTINE feldberechnungSUBROUTINE permut(i, sinn)  INTEGER, INTENT(INOUT)     :: i  INTEGER, INTENT(IN)        :: sinn  INTEGER, DIMENSION(1:3)    :: triplet    triplet = (/1, 2, 3/); triplet = CSHIFT(triplet, SIGN(1, sinn))  i = triplet(i)END SUBROUTINE permutSUBROUTINE find_ampl(array, ampl)  DOUBLE PRECISION, INTENT(IN), DIMENSION(1:3)     :: array   DOUBLE PRECISION, INTENT(INOUT)                  :: ampl  INTEGER                                          :: i  DO i = 1, 3, 1    IF (array(i) .NE. 0.0d0) THEN      ampl  = array(i)    ENDIF  ENDDOEND SUBROUTINE find_amplEND MODULE analytic 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -