📄 intrinsic.texi
字号:
@item (C) If @var{TGT} is present and an array target, the result is true if@var{TGT} and @var{PTR} have the same shape, are not 0 sized arrays, arearrays whose elements are not 0 sized storage sequences, and @var{TGT} and@var{PTR} occupy the same storage units in array element order.As in case(B), the result is false, if @var{PTR} is disassociated.@item (D) If @var{TGT} is present and an scalar pointer, the result is true iftarget associated with @var{PTR} and the target associated with @var{TGT}are not 0 sized storage sequences and occupy the same storage units.The result is false, if either @var{TGT} or @var{PTR} is disassociated.@item (E) If @var{TGT} is present and an array pointer, the result is true iftarget associated with @var{PTR} and the target associated with @var{TGT}have the same shape, are not 0 sized arrays, are arrays whose elements arenot 0 sized storage sequences, and @var{TGT} and @var{PTR} occupy the samestorage units in array element order.The result is false, if either @var{TGT} or @var{PTR} is disassociated.@end table@item @emph{Example}:@smallexampleprogram test_associated implicit none real, target :: tgt(2) = (/1., 2./) real, pointer :: ptr(:) ptr => tgt if (associated(ptr) .eqv. .false.) call abort if (associated(ptr,tgt) .eqv. .false.) call abortend program test_associated@end smallexample@item @emph{See also}:@ref{NULL}@end table@node ATAN@section @code{ATAN} --- Arctangent function @fnindex ATAN@fnindex DATAN@cindex trigonometric function, tangent, inverse@cindex tangent, inverse@table @asis@item @emph{Description}:@code{ATAN(X)} computes the arctangent of @var{X}.@item @emph{Standard}:F77 and later@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = ATAN(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{X} @tab The type shall be @code{REAL(*)}.@end multitable@item @emph{Return value}:The return value is of type @code{REAL(*)} and it lies in therange @math{ - \pi / 2 \leq \atan (x) \leq \pi / 2}.@item @emph{Example}:@smallexampleprogram test_atan real(8) :: x = 2.866_8 x = atan(x)end program test_atan@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later@end multitable@item @emph{See also}:Inverse function: @ref{TAN}@end table@node ATAN2@section @code{ATAN2} --- Arctangent function @fnindex ATAN2@fnindex DATAN2@cindex trigonometric function, tangent, inverse@cindex tangent, inverse@table @asis@item @emph{Description}:@code{ATAN2(Y,X)} computes the arctangent of the complex number@math{X + i Y}.@item @emph{Standard}:F77 and later@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = ATAN2(Y,X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{Y} @tab The type shall be @code{REAL(*)}.@item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.If @var{Y} is zero, then @var{X} must be nonzero.@end multitable@item @emph{Return value}:The return value has the same type and kind type parameter as @var{Y}.It is the principal value of the complex number @math{X + i Y}. If@var{X} is nonzero, then it lies in the range @math{-\pi \le \atan (x) \leq \pi}.The sign is positive if @var{Y} is positive. If @var{Y} is zero, thenthe return value is zero if @var{X} is positive and @math{\pi} if @var{X}is negative. Finally, if @var{X} is zero, then the magnitude of the resultis @math{\pi/2}.@item @emph{Example}:@smallexampleprogram test_atan2 real(4) :: x = 1.e0_4, y = 0.5e0_4 x = atan2(y,x)end program test_atan2@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later@end multitable@end table@node ATANH@section @code{ATANH} --- Hyperbolic arctangent function@fnindex ASINH@fnindex DASINH@cindex area hyperbolic tangent@cindex hyperbolic arctangent@cindex hyperbolic function, tangent, inverse@cindex tangent, hyperbolic, inverse@table @asis@item @emph{Description}:@code{ATANH(X)} computes the hyperbolic arctangent of @var{X} (inverseof @code{TANH(X)}).@item @emph{Standard}:GNU extension@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = ATANH(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{X} @tab The type shall be @code{REAL(*)} with a magnitudethat is less than or equal to one.@end multitable@item @emph{Return value}:The return value is of type @code{REAL(*)} and it lies in therange @math{-\infty \leq \atanh(x) \leq \infty}.@item @emph{Example}:@smallexamplePROGRAM test_atanh REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /) WRITE (*,*) ATANH(x)END PROGRAM@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DATANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension@end multitable@item @emph{See also}:Inverse function: @ref{TANH}@end table@node BESJ0@section @code{BESJ0} --- Bessel function of the first kind of order 0@fnindex BESJ0@fnindex DBESJ0@cindex Bessel function, first kind@table @asis@item @emph{Description}:@code{BESJ0(X)} computes the Bessel function of the first kind of order 0of @var{X}.@item @emph{Standard}:GNU extension@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = BESJ0(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is of type @code{REAL(*)} and it lies in therange @math{ - 0.4027... \leq Bessel (0,x) \leq 1}.@item @emph{Example}:@smallexampleprogram test_besj0 real(8) :: x = 0.0_8 x = besj0(x)end program test_besj0@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DBESJ0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension@end multitable@end table@node BESJ1@section @code{BESJ1} --- Bessel function of the first kind of order 1@fnindex BESJ1@fnindex DBESJ1@cindex Bessel function, first kind@table @asis@item @emph{Description}:@code{BESJ1(X)} computes the Bessel function of the first kind of order 1of @var{X}.@item @emph{Standard}:GNU extension@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = BESJ1(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is of type @code{REAL(*)} and it lies in therange @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }.@item @emph{Example}:@smallexampleprogram test_besj1 real(8) :: x = 1.0_8 x = besj1(x)end program test_besj1@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DBESJ1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension@end multitable@end table@node BESJN@section @code{BESJN} --- Bessel function of the first kind@fnindex BESJN@fnindex DBESJN@cindex Bessel function, first kind@table @asis@item @emph{Description}:@code{BESJN(N, X)} computes the Bessel function of the first kind of order@var{N} of @var{X}.If both arguments are arrays, their ranks and shapes shall conform.@item @emph{Standard}:GNU extension@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = BESJN(N, X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{N} @tab Shall be a scalar or an array of type @code{INTEGER(*)}.@item @var{X} @tab Shall be a scalar or an array of type @code{REAL(*)}.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besjn real(8) :: x = 1.0_8 x = besjn(5,x)end program test_besjn@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DBESJN(X)} @tab @code{INTEGER(*) N} @tab @code{REAL(8)} @tab GNU extension@item @tab @code{REAL(8) X} @tab @tab@end multitable@end table@node BESY0@section @code{BESY0} --- Bessel function of the second kind of order 0@fnindex BESY0@fnindex DBESY0@cindex Bessel function, second kind@table @asis@item @emph{Description}:@code{BESY0(X)} computes the Bessel function of the second kind of order 0of @var{X}.@item @emph{Standard}:GNU extension@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = BESY0(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besy0 real(8) :: x = 0.0_8 x = besy0(x)end program test_besy0@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DBESY0(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension@end multitable@end table@node BESY1@section @code{BESY1} --- Bessel function of the second kind of order 1@fnindex BESY1@fnindex DBESY1@cindex Bessel function, second kind@table @asis@item @emph{Description}:@code{BESY1(X)} computes the Bessel function of the second kind of order 1of @var{X}.@item @emph{Standard}:GNU extension@item @emph{Class}:Elemental function@item @emph{Syntax}:@code{RESULT = BESY1(X)}@item @emph{Arguments}:@multitable @columnfractions .15 .70@item @var{X} @tab The type shall be @code{REAL(*)}, and it shall be scalar.@end multitable@item @emph{Return value}:The return value is a scalar of type @code{REAL(*)}.@item @emph{Example}:@smallexampleprogram test_besy1 real(8) :: x = 1.0_8 x = besy1(x)end program test_besy1@end smallexample@item @emph{Specific names}:@multitable @columnfractions .20 .20 .20 .25@item Name @tab Argument @tab Return type @tab Standard@item @code{DBESY1(X)}@tab @code{REAL(8) X} @tab @code{REAL(8)} @tab GNU extension@end multitable@end table@node BESYN@section @code{BESYN} --- Bessel function of the second kind@fnindex BESYN@fnindex DBESYN@cindex Bessel function, second kind@table @asis@item @emph{Description}:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -