⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 group____gdsl__bstree.html

📁 一个通用的C语言实现的数据结构
💻 HTML
📖 第 1 页 / 共 5 页
字号:
<table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>Create a new low-level binary search tree. <p>Allocate a new low-level binary search tree data structure. Its root content is sets to E and its left and right sons are set to NULL.<p><dl compact><dt><b>Note:</b></dt><dd>Complexity: O( 1 ) </dd></dl><dl compact><dt><b>Precondition:</b></dt><dd>nothing. </dd></dl><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"></td><td valign="top"><em>E</em>&nbsp;</td><td>The root content of the new low-level binary search tree to create. </td></tr>  </table></dl><dl compact><dt><b>Returns:</b></dt><dd>the newly allocated low-level binary search tree in case of success. <p>NULL in case of insufficient memory. </dd></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="group____gdsl__bstree.html#gfd25488c416a9633f4120ad314212333">_gdsl_bstree_free()</a> </dd></dl>    </td>  </tr></table><a class="anchor" name="gfd25488c416a9633f4120ad314212333"></a><!-- doxytag: member="_gdsl_bstree.h::_gdsl_bstree_free" ref="gfd25488c416a9633f4120ad314212333" args="(_gdsl_bstree_t T, const gdsl_free_func_t FREE_F)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="md" nowrap valign="top">void _gdsl_bstree_free           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top"><a class="el" href="group____gdsl__bstree.html#g0b897530b6c7e499f38de973f8e0889d">_gdsl_bstree_t</a>&nbsp;</td>          <td class="mdname" nowrap> <em>T</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>          <td class="md"></td>          <td class="md" nowrap>const <a class="el" href="group__gdsl__types.html#g2c6b3f96b291b5b39d2799f93e350053">gdsl_free_func_t</a>&nbsp;</td>          <td class="mdname" nowrap> <em>FREE_F</em></td>        </tr>        <tr>          <td class="md"></td>          <td class="md">)&nbsp;</td>          <td class="md" colspan="2"></td>        </tr>      </table>    </td>  </tr></table><table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>Destroy a low-level binary search tree. <p>Flush and destroy the low-level binary search tree T. If FREE_F != NULL, FREE_F function is used to deallocate each T's element. Otherwise nothing is done with T's elements.<p><dl compact><dt><b>Note:</b></dt><dd>Complexity: O( |T| ) </dd></dl><dl compact><dt><b>Precondition:</b></dt><dd>nothing. </dd></dl><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"></td><td valign="top"><em>T</em>&nbsp;</td><td>The low-level binary search tree to destroy. </td></tr>    <tr><td valign="top"></td><td valign="top"><em>FREE_F</em>&nbsp;</td><td>The function used to deallocate T's nodes contents. </td></tr>  </table></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="group____gdsl__bstree.html#g10c784a6ed1d430af98b0adba1bebdcf">_gdsl_bstree_alloc()</a> </dd></dl>    </td>  </tr></table><a class="anchor" name="g2f94dab341cc2a1c9c2a8239369dae4d"></a><!-- doxytag: member="_gdsl_bstree.h::_gdsl_bstree_copy" ref="g2f94dab341cc2a1c9c2a8239369dae4d" args="(const _gdsl_bstree_t T, const gdsl_copy_func_t COPY_F)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="md" nowrap valign="top"><a class="el" href="group____gdsl__bstree.html#g0b897530b6c7e499f38de973f8e0889d">_gdsl_bstree_t</a> _gdsl_bstree_copy           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top">const <a class="el" href="group____gdsl__bstree.html#g0b897530b6c7e499f38de973f8e0889d">_gdsl_bstree_t</a>&nbsp;</td>          <td class="mdname" nowrap> <em>T</em>, </td>        </tr>        <tr>          <td class="md" nowrap align="right"></td>          <td class="md"></td>          <td class="md" nowrap>const <a class="el" href="group__gdsl__types.html#g4f82a1f397e66d35523569063d570175">gdsl_copy_func_t</a>&nbsp;</td>          <td class="mdname" nowrap> <em>COPY_F</em></td>        </tr>        <tr>          <td class="md"></td>          <td class="md">)&nbsp;</td>          <td class="md" colspan="2"></td>        </tr>      </table>    </td>  </tr></table><table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>Copy a low-level binary search tree. <p>Create and return a copy of the low-level binary search tree T using COPY_F on each T's element to copy them.<p><dl compact><dt><b>Note:</b></dt><dd>Complexity: O( |T| ) </dd></dl><dl compact><dt><b>Precondition:</b></dt><dd>COPY_F != NULL. </dd></dl><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"></td><td valign="top"><em>T</em>&nbsp;</td><td>The low-level binary search tree to copy. </td></tr>    <tr><td valign="top"></td><td valign="top"><em>COPY_F</em>&nbsp;</td><td>The function used to copy T's nodes contents. </td></tr>  </table></dl><dl compact><dt><b>Returns:</b></dt><dd>a copy of T in case of success. <p>NULL if _gdsl_bstree_is_empty (T) == TRUE or in case of insufficient memory. </dd></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="group____gdsl__bstree.html#g10c784a6ed1d430af98b0adba1bebdcf">_gdsl_bstree_alloc()</a> <p><a class="el" href="group____gdsl__bstree.html#gfd25488c416a9633f4120ad314212333">_gdsl_bstree_free()</a> <p><a class="el" href="group____gdsl__bstree.html#g5955df8215a1223beed9edb24094fd80">_gdsl_bstree_is_empty()</a> </dd></dl>    </td>  </tr></table><a class="anchor" name="g5955df8215a1223beed9edb24094fd80"></a><!-- doxytag: member="_gdsl_bstree.h::_gdsl_bstree_is_empty" ref="g5955df8215a1223beed9edb24094fd80" args="(const _gdsl_bstree_t T)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="md" nowrap valign="top"><a class="el" href="group__gdsl__types.html#gf6a258d8f3ee5206d682d799316314b1">bool</a> _gdsl_bstree_is_empty           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top">const <a class="el" href="group____gdsl__bstree.html#g0b897530b6c7e499f38de973f8e0889d">_gdsl_bstree_t</a>&nbsp;</td>          <td class="mdname1" valign="top" nowrap> <em>T</em>          </td>          <td class="md" valign="top">&nbsp;)&nbsp;</td>          <td class="md" nowrap></td>        </tr>      </table>    </td>  </tr></table><table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>Check if a low-level binary search tree is empty. <p><dl compact><dt><b>Note:</b></dt><dd>Complexity: O( 1 ) </dd></dl><dl compact><dt><b>Precondition:</b></dt><dd>nothing. </dd></dl><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"></td><td valign="top"><em>T</em>&nbsp;</td><td>The low-level binary search tree to check. </td></tr>  </table></dl><dl compact><dt><b>Returns:</b></dt><dd>TRUE if the low-level binary search tree T is empty. <p>FALSE if the low-level binary search tree T is not empty. </dd></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="group____gdsl__bstree.html#g59ae4fa970ad43f4678e58b362628db2">_gdsl_bstree_is_leaf()</a> <p><a class="el" href="group____gdsl__bstree.html#ge62897ba93764533e8df2495453c4fa9">_gdsl_bstree_is_root()</a> </dd></dl>    </td>  </tr></table><a class="anchor" name="g59ae4fa970ad43f4678e58b362628db2"></a><!-- doxytag: member="_gdsl_bstree.h::_gdsl_bstree_is_leaf" ref="g59ae4fa970ad43f4678e58b362628db2" args="(const _gdsl_bstree_t T)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">  <tr>    <td class="mdRow">      <table cellpadding="0" cellspacing="0" border="0">        <tr>          <td class="md" nowrap valign="top"><a class="el" href="group__gdsl__types.html#gf6a258d8f3ee5206d682d799316314b1">bool</a> _gdsl_bstree_is_leaf           </td>          <td class="md" valign="top">(&nbsp;</td>          <td class="md" nowrap valign="top">const <a class="el" href="group____gdsl__bstree.html#g0b897530b6c7e499f38de973f8e0889d">_gdsl_bstree_t</a>&nbsp;</td>          <td class="mdname1" valign="top" nowrap> <em>T</em>          </td>          <td class="md" valign="top">&nbsp;)&nbsp;</td>          <td class="md" nowrap></td>        </tr>      </table>    </td>  </tr></table><table cellspacing="5" cellpadding="0" border="0">  <tr>    <td>      &nbsp;    </td>    <td><p>Check if a low-level binary search tree is reduced to a leaf. <p><dl compact><dt><b>Note:</b></dt><dd>Complexity: O( 1 ) </dd></dl><dl compact><dt><b>Precondition:</b></dt><dd>T must be a non-empty _gdsl_bstree_t. </dd></dl><dl compact><dt><b>Parameters:</b></dt><dd>  <table border="0" cellspacing="2" cellpadding="0">    <tr><td valign="top"></td><td valign="top"><em>T</em>&nbsp;</td><td>The low-level binary search tree to check. </td></tr>  </table></dl><dl compact><dt><b>Returns:</b></dt><dd>TRUE if the low-level binary search tree T is a leaf. <p>FALSE if the low-level binary search tree T is not a leaf. </dd></dl><dl compact><dt><b>See also:</b></dt><dd><a class="el" href="group____gdsl__bstree.html#g5955df8215a1223beed9edb24094fd80">_gdsl_bstree_is_empty()</a> <p><a class="el" href="group____gdsl__bstree.html#ge62897ba93764533e8df2495453c4fa9">_gdsl_bstree_is_root()</a> </dd></dl>    </td>  </tr></table><a class="anchor" name="ga85b6f4474e138752d7bb1d19d444110"></a><!-- doxytag: member="_gdsl_bstree.h::_gdsl_bstree_get_content" ref="ga85b6f4474e138752d7bb1d19d444110" args="(const _gdsl_bstree_t T)" --><p><table class="mdTable" cellpadding="2" cellspacing="0">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -