📄 scl_网络流.cc
字号:
Dinic: 连续最短增广路算法,即一次标号多次增广 O(n^2*m)
#include <algorithm>
using namespace std;
#define MAXN 1010
#define MAXM 2 * MAXN * MAXN
#define INF 0x3fffffff
int N, src, dst;
int n, m;
int c[MAXM], f[MAXM], ev[MAXM], be[MAXM], next[MAXM], num;
int nbs[MAXN], g[MAXN], open[MAXN], d[MAXN], mk[MAXN];
void addEdge(int u, int v, int cc){
next[++num] = nbs[u]; nbs[u] = num; be[num] = num + 1;
ev[num] = v; c[num] = cc; f[num] = 0;
next[++num] = nbs[v]; nbs[v] = num; be[num] = num - 1;
ev[num] = u; c[num] = 0; f[num] = 0;
}
bool build(int s = src, int t = dst){
int cur, tail, i, j, u, v;
memset(d, 0xff, sizeof(d)); memset(g, 0, sizeof(g));
open[0] = s; d[s] = 0; g[s] = nbs[s];
for (cur = tail = 0; cur <= tail && d[t] == -1; cur++)
for (u = open[cur], j = nbs[u]; j; j = next[j]){
v = ev[j];
if (d[v] == -1 && f[j] < c[j]){
open[++tail] = v;
d[v] = d[u] + 1;
g[v] = nbs[v];
}
}
return (d[t] > 0);
}
int augment(int x = src, int low = INF, int t = dst){
if (x == t) return low;
int ret = 0, v;
for (int &i = g[x]; i; i = next[i]){
v = ev[i];
if ((c[i] > f[i]) && (d[v] == d[x] + 1)){
ret = augment(v, low <? c[i] - f[i]);
if(ret){
f[i] += ret; f[be[i]] -= ret;
return ret;
}
}
}
return 0;
}
int maxFlow(){
int flow, ret = 0;
src = 1; dst = n;
while (build()) while (flow = augment(src)) ret += flow;
return ret;
}
int main(){
int u, v, w;
while (scanf("%d %d", &m, &n) != EOF){
num = 0; memset(nbs, 0, sizeof(nbs));
for (int i = 0; i < m; i++){
scanf("%d %d %d", &u, &v, &w);
addEdge(u, v, w);
}
printf("%d\n", maxFlow());
}
return 0;
}
网络流求最大权闭合图(闭包)
poj2987
#include <algorithm>
#include <vector>
using namespace std;
const int MAXN = 5010;
const __int64 MAXM = 10000000;
const __int64 INF = MAXM * MAXM;
int N, src, dst;
int n, m;
__int64 total;
bool bad;
__int64 c[MAXM], f[MAXM];
int ev[MAXM], be[MAXM], next[MAXM], num;
int nbs[MAXN], g[MAXN], open[MAXN], d[MAXN], mk[MAXN];
//dinic
void addEdge(int u, int v, __int64 cc){
next[++num] = nbs[u]; nbs[u] = num; be[num] = num + 1;
ev[num] = v; c[num] = cc; f[num] = 0;
next[++num] = nbs[v]; nbs[v] = num; be[num] = num - 1;
ev[num] = u; c[num] = 0; f[num] = 0;
}
bool build(int s = src, int t = dst){
int cur, tail, i, j, u, v;
memset(d, 0xff, sizeof(d)); memset(g, 0, sizeof(g));
open[0] = s; d[s] = 0; g[s] = nbs[s];
for (cur = tail = 0; cur <= tail && d[t] == -1; cur++)
for (u = open[cur], j = nbs[u]; j; j = next[j]){
v = ev[j];
if (d[v] == -1 && f[j] < c[j]){
open[++tail] = v;
d[v] = d[u] + 1;
g[v] = nbs[v];
}
}
return (d[t] > 0);
}
__int64 augment(int x = src, __int64 low = INF, int t = dst){
if (x == t) return low;
int ret = 0, v;
for (int &i = g[x]; i; i = next[i]){
v = ev[i];
if ((c[i] > f[i]) && (d[v] == d[x] + 1)){
ret = augment(v, low <? c[i] - f[i]);
if(ret){
f[i] += ret; f[be[i]] -= ret;
return ret;
}
}
}
return 0;
}
__int64 maxFlow(){
__int64 flow, ret = 0;
while (build()) while (flow = augment(src)) ret += flow;
return ret;
}
//end of dinic
//build network
bool init(){
if (scanf("%d %d", &n, &m) == EOF) return false;
bad = true;
total = 0; src = 0; dst = n + 1;
num = 0; memset(nbs, 0, sizeof(nbs));
__int64 t;
for (int i = 1; i <= n; i++)
{
scanf("%I64d", &t);
if (t > 0) { bad = false; addEdge(src, i, t); total += t; }
else if (t < 0) addEdge(i, dst, -t);
}
int a, b;
while (m--){
scanf("%d %d", &a, &b);
addEdge(a, b, INF);
}
return true;
}
//end of build network
int points;
void dfsvis(int cur) {
mk[cur] = 1; points++;
for (int i = nbs[cur]; i; i = next[i])
if (f[i] < c[i] && !mk[ev[i]]) dfsvis(ev[i]);
}
void solve() {
if (bad) { printf("0 0\n"); return;}
__int64 ans = total - maxFlow();
memset(mk, 0, sizeof(mk));
points = 0;
dfsvis(src);
printf("%d %I64d\n", points - 1, ans);
}
int main(){
while (init()) solve();
return 0;
}
最大密度子图 01分数规划+网络流
poj3155
#include <algorithm>
using namespace std;
const int MAXN = 110;
const int MAXM = 1010;
struct Edge{
int u, v;
Edge(int u = 0, int v = 0):u(u), v(v){};
};
int n, m;
int deg[MAXN];
Edge e[MAXM];
const double INF = 1e20;
int N, src, dst;
double c[MAXN][MAXN], f[MAXN][MAXN], d[MAXN];
int pnt[MAXN], open[MAXN], mk[MAXN];
void init(){
scanf("%d %d", &n, &m);
src = 0; dst = n + 1; N = n + 2;
int u, v;
memset(deg, 0, sizeof(deg));
for (int i = 1; i <= m; i++){
scanf("%d %d", &u, &v);
e[i] = Edge(u, v);
deg[u]++; deg[v]++;
}
}
//SAP
double maxFlow(int n = N, int s = src, int t = dst)
{
int cur, tail, u, v; double flow=0; memset(f,0,sizeof(f));
do{ memset(mk,0,sizeof(mk)); memset(d,0,sizeof(d));
open[0]=s; mk[s]=1; d[s]=INF;
for(pnt[s]=cur=tail=0;cur<=tail&&!mk[t];cur++)
for(u=open[cur],v=0;v<n;v++)if(!mk[v]&&f[u][v]<c[u][v]){
mk[v]=1; open[++tail]=v; pnt[v]=u;
if(d[u]<c[u][v]-f[u][v])d[v]=d[u];
else d[v]=c[u][v]-f[u][v];
}
if(!mk[t])break; flow+=d[t];
for(u=t;u!=s;){v=u;u=pnt[v];f[u][v]+=d[t]; f[v][u]=-f[u][v];}
}while(d[t]>0); return flow;
}
int ans;
void dfsvis(int u){
mk[u]=1; ans++;
for(int v = 0; v < N; ++v) if( dcmp(f[u][v]-c[u][v]) < 0 && !mk[v] )
dfsvis(v);
}
double h(double g){
memset(c, 0, sizeof(c));
for (int i = 1; i <= m; i++) {c[e[i]. u][e[i]. v] = 1.0; c[e[i]. v][e[i]. u] = 1.0;}
for (int i = 1; i <= n; i++) {c[src][i] = m; c[i][dst] = m + 2*g - deg[i];}
double f = maxFlow();
return 1.0*m*n - f;
}
void solve(){
if (m == 0){ puts("1\n1"); return;};
double low = 0.0, high = m, mid;
while (low + 1.0/n/n< high){
mid = (low + high) / 2;
if (h(mid) <= 0) high = mid; else low = mid;
}
h(low);
ans = 0; memset(mk, 0, sizeof(mk));
dfsvis(src);
printf("%d\n", ans - 1);
for (int i = 1; i <= n; i++)
if (mk[i]) printf("%d\n", i);
}
int main(){
init();
solve();
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -