📄 du440.c
字号:
/* * (C) Copyright 2008 * Matthias Fuchs, esd gmbh, matthias.fuchs@esd-electronics.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */#include <common.h>#include <asm/processor.h>#include <asm/io.h>#include <asm/bitops.h>#include <command.h>#include <i2c.h>#include <ppc440.h>#include "du440.h"DECLARE_GLOBAL_DATA_PTR;extern flash_info_t flash_info[CFG_MAX_FLASH_BANKS];extern ulong flash_get_size (ulong base, int banknum);int usbhub_init(void);int dvi_init(void);int eeprom_write_enable (unsigned dev_addr, int state);int board_revision(void);static int du440_post_errors;int board_early_init_f(void){ u32 sdr0_cust0; u32 sdr0_pfc1, sdr0_pfc2; u32 reg; mtdcr(ebccfga, xbcfg); mtdcr(ebccfgd, 0xb8400000); /* * Setup the GPIO pins */ out_be32((void*)GPIO0_OR, 0x00000000 | CFG_GPIO0_EP_EEP); out_be32((void*)GPIO0_TCR, 0x0000000f | CFG_GPIO0_EP_EEP); out_be32((void*)GPIO0_OSRL, 0x50055400); out_be32((void*)GPIO0_OSRH, 0x550050aa); out_be32((void*)GPIO0_TSRL, 0x50055400); out_be32((void*)GPIO0_TSRH, 0x55005000); out_be32((void*)GPIO0_ISR1L, 0x50000000); out_be32((void*)GPIO0_ISR1H, 0x00000000); out_be32((void*)GPIO0_ISR2L, 0x00000000); out_be32((void*)GPIO0_ISR2H, 0x00000100); out_be32((void*)GPIO0_ISR3L, 0x00000000); out_be32((void*)GPIO0_ISR3H, 0x00000000); out_be32((void*)GPIO1_OR, 0x00000000); out_be32((void*)GPIO1_TCR, 0xc2000000 | CFG_GPIO1_IORSTN | CFG_GPIO1_IORST2N | CFG_GPIO1_LEDUSR1 | CFG_GPIO1_LEDUSR2 | CFG_GPIO1_LEDPOST | CFG_GPIO1_LEDDU); out_be32((void*)GPIO1_ODR, CFG_GPIO1_LEDDU); out_be32((void*)GPIO1_OSRL, 0x5c280000); out_be32((void*)GPIO1_OSRH, 0x00000000); out_be32((void*)GPIO1_TSRL, 0x0c000000); out_be32((void*)GPIO1_TSRH, 0x00000000); out_be32((void*)GPIO1_ISR1L, 0x00005550); out_be32((void*)GPIO1_ISR1H, 0x00000000); out_be32((void*)GPIO1_ISR2L, 0x00050000); out_be32((void*)GPIO1_ISR2H, 0x00000000); out_be32((void*)GPIO1_ISR3L, 0x01400000); out_be32((void*)GPIO1_ISR3H, 0x00000000); /* * Setup the interrupt controller polarities, triggers, etc. */ mtdcr(uic0sr, 0xffffffff); /* clear all */ mtdcr(uic0er, 0x00000000); /* disable all */ mtdcr(uic0cr, 0x00000005); /* ATI & UIC1 crit are critical */ mtdcr(uic0pr, 0xfffff7ff); /* per ref-board manual */ mtdcr(uic0tr, 0x00000000); /* per ref-board manual */ mtdcr(uic0vr, 0x00000000); /* int31 highest, base=0x000 */ mtdcr(uic0sr, 0xffffffff); /* clear all */ /* * UIC1: * bit30: ext. Irq 1: PLD : int 32+30 */ mtdcr(uic1sr, 0xffffffff); /* clear all */ mtdcr(uic1er, 0x00000000); /* disable all */ mtdcr(uic1cr, 0x00000000); /* all non-critical */ mtdcr(uic1pr, 0xfffffffd); mtdcr(uic1tr, 0x00000000); mtdcr(uic1vr, 0x00000000); /* int31 highest, base=0x000 */ mtdcr(uic1sr, 0xffffffff); /* clear all */ /* * UIC2 * bit3: ext. Irq 2: DCF77 : int 64+3 */ mtdcr(uic2sr, 0xffffffff); /* clear all */ mtdcr(uic2er, 0x00000000); /* disable all */ mtdcr(uic2cr, 0x00000000); /* all non-critical */ mtdcr(uic2pr, 0xffffffff); /* per ref-board manual */ mtdcr(uic2tr, 0x00000000); /* per ref-board manual */ mtdcr(uic2vr, 0x00000000); /* int31 highest, base=0x000 */ mtdcr(uic2sr, 0xffffffff); /* clear all */ /* select Ethernet pins */ mfsdr(SDR0_PFC1, sdr0_pfc1); mfsdr(SDR0_PFC2, sdr0_pfc2); /* setup EMAC bridge interface */ if (board_revision() == 0) { /* 1 x MII */ sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SELECT_MASK) | SDR0_PFC1_SELECT_CONFIG_1_2; sdr0_pfc2 = (sdr0_pfc2 & ~SDR0_PFC2_SELECT_MASK) | SDR0_PFC2_SELECT_CONFIG_1_2; } else { /* 2 x SMII */ sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SELECT_MASK) | SDR0_PFC1_SELECT_CONFIG_6; sdr0_pfc2 = (sdr0_pfc2 & ~SDR0_PFC2_SELECT_MASK) | SDR0_PFC2_SELECT_CONFIG_6; } /* enable 2nd IIC */ sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SIS_MASK) | SDR0_PFC1_SIS_IIC1_SEL; mtsdr(SDR0_PFC2, sdr0_pfc2); mtsdr(SDR0_PFC1, sdr0_pfc1); /* PCI arbiter enabled */ mfsdr(sdr_pci0, reg); mtsdr(sdr_pci0, 0x80000000 | reg); /* setup NAND FLASH */ mfsdr(SDR0_CUST0, sdr0_cust0); sdr0_cust0 = SDR0_CUST0_MUX_NDFC_SEL | SDR0_CUST0_NDFC_ENABLE | SDR0_CUST0_NDFC_BW_8_BIT | SDR0_CUST0_NDFC_ARE_MASK | (0x80000000 >> (28 + CFG_NAND0_CS)) | (0x80000000 >> (28 + CFG_NAND1_CS)); mtsdr(SDR0_CUST0, sdr0_cust0); return 0;}int misc_init_r(void){ uint pbcr; int size_val = 0; u32 reg; unsigned long usb2d0cr = 0; unsigned long usb2phy0cr, usb2h0cr = 0; unsigned long sdr0_pfc1; int i, j; /* adjust flash start and offset */ gd->bd->bi_flashstart = 0 - gd->bd->bi_flashsize; gd->bd->bi_flashoffset = 0; mtdcr(ebccfga, pb0cr); pbcr = mfdcr(ebccfgd); size_val = ffs(gd->bd->bi_flashsize) - 21; pbcr = (pbcr & 0x0001ffff) | gd->bd->bi_flashstart | (size_val << 17); mtdcr(ebccfga, pb0cr); mtdcr(ebccfgd, pbcr); /* * Re-check to get correct base address */ flash_get_size(gd->bd->bi_flashstart, 0); /* * USB suff... */ /* SDR Setting */ mfsdr(SDR0_PFC1, sdr0_pfc1); mfsdr(SDR0_USB0, usb2d0cr); mfsdr(SDR0_USB2PHY0CR, usb2phy0cr); mfsdr(SDR0_USB2H0CR, usb2h0cr); usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_XOCLK_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_XOCLK_EXTERNAL; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_WDINT_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_WDINT_16BIT_30MHZ; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DVBUS_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DVBUS_PURDIS; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DWNSTR_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DWNSTR_HOST; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_UTMICN_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_UTMICN_HOST; /* An 8-bit/60MHz interface is the only possible alternative when connecting the Device to the PHY */ usb2h0cr = usb2h0cr &~SDR0_USB2H0CR_WDINT_MASK; usb2h0cr = usb2h0cr | SDR0_USB2H0CR_WDINT_16BIT_30MHZ; /* To enable the USB 2.0 Device function through the UTMI interface */ usb2d0cr = usb2d0cr &~SDR0_USB2D0CR_USB2DEV_EBC_SEL_MASK; sdr0_pfc1 = sdr0_pfc1 &~SDR0_PFC1_UES_MASK; sdr0_pfc1 = sdr0_pfc1 | SDR0_PFC1_UES_EBCHR_SEL; mtsdr(SDR0_PFC1, sdr0_pfc1); mtsdr(SDR0_USB0, usb2d0cr); mtsdr(SDR0_USB2PHY0CR, usb2phy0cr); mtsdr(SDR0_USB2H0CR, usb2h0cr); /* clear resets */ udelay (1000); mtsdr(SDR0_SRST1, 0x00000000); udelay (1000); mtsdr(SDR0_SRST0, 0x00000000); printf("USB: Host(int phy)\n"); /* * Clear PLB4A0_ACR[WRP] * This fix will make the MAL burst disabling patch for the Linux * EMAC driver obsolete. */ reg = mfdcr(plb4_acr) & ~PLB4_ACR_WRP; mtdcr(plb4_acr, reg); /* * release IO-RST# * We have to wait at least 560ms until we may call usbhub_init */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) | CFG_GPIO1_IORSTN | CFG_GPIO1_IORST2N); /* * flash USR1/2 LEDs (600ms) * This results in the necessary delay from IORST# until * calling usbhub_init will succeed */ for (j = 0; j < 3; j++) { out_be32((void*)GPIO1_OR, (in_be32((void*)GPIO1_OR) & ~CFG_GPIO1_LEDUSR2) | CFG_GPIO1_LEDUSR1); for (i = 0; i < 100; i++) udelay(1000); out_be32((void*)GPIO1_OR, (in_be32((void*)GPIO1_OR) & ~CFG_GPIO1_LEDUSR1) | CFG_GPIO1_LEDUSR2); for (i = 0; i < 100; i++) udelay(1000); } out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) & ~(CFG_GPIO1_LEDUSR1 | CFG_GPIO1_LEDUSR2)); if (usbhub_init()) du440_post_errors++; if (dvi_init()) du440_post_errors++; return 0;}int pld_revision(void){ out8(CFG_CPLD_BASE, 0x00); return (int)(in8(CFG_CPLD_BASE) & CPLD_VERSION_MASK);}int board_revision(void){ int rpins = (int)((in_be32((void*)GPIO1_IR) & CFG_GPIO1_HWVER_MASK) >> CFG_GPIO1_HWVER_SHIFT); return ((rpins & 1) << 3) | ((rpins & 2) << 1) | ((rpins & 4) >> 1) | ((rpins & 8) >> 3);}#if defined(CONFIG_SHOW_ACTIVITY)void board_show_activity (ulong timestamp){ if ((timestamp % 100) == 0) out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) ^ CFG_GPIO1_LEDUSR1);}void show_activity(int arg){}#endif /* CONFIG_SHOW_ACTIVITY */int du440_phy_addr(int devnum){ if (board_revision() == 0) return devnum; return devnum + 1;}int checkboard(void){ char serno[32]; puts("Board: DU440"); if (getenv_r("serial#", serno, sizeof(serno)) > 0) { puts(", serial# "); puts(serno); } printf(", HW-Rev. 1.%d, CPLD-Rev. 1.%d\n", board_revision(), pld_revision()); return (0);}/* * pci_pre_init * * This routine is called just prior to registering the hose and gives * the board the opportunity to check things. Returning a value of zero * indicates that things are bad & PCI initialization should be aborted. * * Different boards may wish to customize the pci controller structure * (add regions, override default access routines, etc) or perform * certain pre-initialization actions. */#if defined(CONFIG_PCI)int pci_pre_init(struct pci_controller *hose){ unsigned long addr; /* * Set priority for all PLB3 devices to 0. * Set PLB3 arbiter to fair mode. */ mfsdr(sdr_amp1, addr); mtsdr(sdr_amp1, (addr & 0x000000FF) | 0x0000FF00); addr = mfdcr(plb3_acr); mtdcr(plb3_acr, addr | 0x80000000); /* * Set priority for all PLB4 devices to 0. */ mfsdr(sdr_amp0, addr); mtsdr(sdr_amp0, (addr & 0x000000FF) | 0x0000FF00); addr = mfdcr(plb4_acr) | 0xa0000000; /* Was 0x8---- */ mtdcr(plb4_acr, addr); /* * Set Nebula PLB4 arbiter to fair mode. */ /* Segment0 */ addr = (mfdcr(plb0_acr) & ~plb0_acr_ppm_mask) | plb0_acr_ppm_fair; addr = (addr & ~plb0_acr_hbu_mask) | plb0_acr_hbu_enabled; addr = (addr & ~plb0_acr_rdp_mask) | plb0_acr_rdp_4deep; addr = (addr & ~plb0_acr_wrp_mask) | plb0_acr_wrp_2deep; mtdcr(plb0_acr, addr); /* Segment1 */ addr = (mfdcr(plb1_acr) & ~plb1_acr_ppm_mask) | plb1_acr_ppm_fair; addr = (addr & ~plb1_acr_hbu_mask) | plb1_acr_hbu_enabled; addr = (addr & ~plb1_acr_rdp_mask) | plb1_acr_rdp_4deep; addr = (addr & ~plb1_acr_wrp_mask) | plb1_acr_wrp_2deep; mtdcr(plb1_acr, addr); return 1;}#endif /* defined(CONFIG_PCI) *//* * pci_target_init * * The bootstrap configuration provides default settings for the pci * inbound map (PIM). But the bootstrap config choices are limited and * may not be sufficient for a given board. */#if defined(CONFIG_PCI) && defined(CFG_PCI_TARGET_INIT)void pci_target_init(struct pci_controller *hose){ /* * Set up Direct MMIO registers */ /* * PowerPC440EPX PCI Master configuration. * Map one 1Gig range of PLB/processor addresses to PCI memory space. * PLB address 0xA0000000-0xDFFFFFFF * ==> PCI address 0xA0000000-0xDFFFFFFF * Use byte reversed out routines to handle endianess. * Make this region non-prefetchable. */ out32r(PCIX0_PMM0MA, 0x00000000); /* PMM0 Mask/Attribute */ /* - disabled b4 setting */ out32r(PCIX0_PMM0LA, CFG_PCI_MEMBASE); /* PMM0 Local Address */ out32r(PCIX0_PMM0PCILA, CFG_PCI_MEMBASE); /* PMM0 PCI Low Address */ out32r(PCIX0_PMM0PCIHA, 0x00000000); /* PMM0 PCI High Address */ out32r(PCIX0_PMM0MA, 0xE0000001); /* 512M + No prefetching, */ /* and enable region */ out32r(PCIX0_PMM1MA, 0x00000000); /* PMM0 Mask/Attribute */ /* - disabled b4 setting */ out32r(PCIX0_PMM1LA, CFG_PCI_MEMBASE2); /* PMM0 Local Address */ out32r(PCIX0_PMM1PCILA, CFG_PCI_MEMBASE2); /* PMM0 PCI Low Address */ out32r(PCIX0_PMM1PCIHA, 0x00000000); /* PMM0 PCI High Address */ out32r(PCIX0_PMM1MA, 0xE0000001); /* 512M + No prefetching, */ /* and enable region */ out32r(PCIX0_PTM1MS, 0x00000001); /* Memory Size/Attribute */ out32r(PCIX0_PTM1LA, 0); /* Local Addr. Reg */ out32r(PCIX0_PTM2MS, 0); /* Memory Size/Attribute */ out32r(PCIX0_PTM2LA, 0); /* Local Addr. Reg */ /* * Set up Configuration registers */ /* Program the board's subsystem id/vendor id */ pci_write_config_word(0, PCI_SUBSYSTEM_VENDOR_ID, PCI_VENDOR_ID_ESDGMBH); pci_write_config_word(0, PCI_SUBSYSTEM_ID, PCI_DEVICE_ID_DU440); pci_write_config_word(0, PCI_CLASS_SUB_CODE, PCI_CLASS_BRIDGE_HOST); /* Configure command register as bus master */ pci_write_config_word(0, PCI_COMMAND, PCI_COMMAND_MASTER); /* 240nS PCI clock */ pci_write_config_word(0, PCI_LATENCY_TIMER, 1); /* No error reporting */ pci_write_config_word(0, PCI_ERREN, 0); pci_write_config_dword(0, PCI_BRDGOPT2, 0x00000101);}#endif /* defined(CONFIG_PCI) && defined(CFG_PCI_TARGET_INIT) */#if defined(CONFIG_PCI) && defined(CFG_PCI_MASTER_INIT)void pci_master_init(struct pci_controller *hose){ unsigned short temp_short; /* * Write the PowerPC440 EP PCI Configuration regs. * Enable PowerPC440 EP to be a master on the PCI bus (PMM). * Enable PowerPC440 EP to act as a PCI memory target (PTM). */ pci_read_config_word(0, PCI_COMMAND, &temp_short); pci_write_config_word(0, PCI_COMMAND, temp_short | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);}#endif /* defined(CONFIG_PCI) && defined(CFG_PCI_MASTER_INIT) *//* * is_pci_host * * This routine is called to determine if a pci scan should be * performed. With various hardware environments (especially cPCI and * PPMC) it's insufficient to depend on the state of the arbiter enable * bit in the strap register, or generic host/adapter assumptions. * * Rather than hard-code a bad assumption in the general 440 code, the * 440 pci code requires the board to decide at runtime. * * Return 0 for adapter mode, non-zero for host (monarch) mode. */#if defined(CONFIG_PCI)int is_pci_host(struct pci_controller *hose){ /* always configured as host. */ return (1);}#endif /* defined(CONFIG_PCI) */int last_stage_init(void){ int e, i; /* everyting is ok: turn on POST-LED */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) | CFG_GPIO1_LEDPOST); /* slowly blink on errors and finally keep LED off */ for (e = 0; e < du440_post_errors; e++) { out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) | CFG_GPIO1_LEDPOST); for (i = 0; i < 500; i++) udelay(1000); out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) & ~CFG_GPIO1_LEDPOST);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -