📄 modlrder.m
字号:
function modlrder(modl)
%MODLRDER Prints model information for models saved in structure format
% MODLRDER prints model information for models created by the
% PLS_Toolbox functions:
% MODLGUI, PCAGUI
% Information printed to the screen includes date and time created,
% and methods used to construct the model. Input to the function is
% the PCA or regression model in structure form (modl).
% There is no output.
%
%I/O: modlrder(modl);
%
%See also: MODLGUI, PCAGUI
%Copyright Eigenvector Research, Inc. 1998
%nbg
disp(' ')
switch upper(modl.name)
case 'PCA'
disp('This is a Principal Components Analysis Model')
disptime(modl.date,modl.time)
dispxblock(modl.xname,modl.samps,modl.means)
dispscale(modl.scale)
case 'NIP'
dispreg('NIP')
dispxblock(modl.xname,modl.samps,modl.meanx)
dispyblock(modl.yname,modl.samps,modl.meany)
dispscale(modl.scale)
dispcv(modl.cv,modl.split,modl.iter)
case 'SIM'
dispreg('SIM')
dispxblock(modl.xname,modl.samps,modl.meanx)
dispyblock(modl.yname,modl.samps,modl.meany)
dispscale(modl.scale)
dispcv(modl.cv,modl.split,modl.iter)
case 'PCR'
dispreg('PCR')
dispxblock(modl.xname,modl.samps,modl.meanx)
dispyblock(modl.yname,modl.samps,modl.meany)
dispscale(modl.scale)
dispcv(modl.cv,modl.split,modl.iter)
case 'PARAFAC'
disp('This is a PARAFAC model')
disptime(modl.date,modl.time)
dispmblock(modl.xname,modl.size)
disp(['Decomposed using ',num2str(modl.nocomp),' factors'])
case 'TLD'
disp('This is a Trilinear Decomposition model')
disptime(modl.date,modl.time)
dispmblock(modl.xname,modl.size)
end
disp(' ')
function [] = disptime(date,time)
disp(['Developed ',date,' ',num2str(time(4),2), ...
':',num2str(time(5),2),':',num2str(time(6),3)])
function [] = dispxblock(name,samps,vars)
disp(['X-block: ',name,' ',num2str(samps), ...
' by ',num2str(length(vars))])
function [] = dispmblock(name,size)
disp(['X-block: ',name,' size ',num2str(size)])
function [] = dispyblock(name,samps,vars)
disp(['Y-block: ',name,' ',num2str(samps), ...
' by ',num2str(length(vars))])
function [] = dispreg(name)
disp('This is a linear regression model using')
switch upper(name)
case 'NIP'
disp('Partial Least Squares calcuated with the NIPLS algorithm')
case 'SIM'
disp('Partial Least Squares calcuated with the SIMPLS algorithm')
case 'PCR'
disp('Principal Components Regression')
end
function [] = dispscale(scaling)
switch lower(scaling)
case 'none'
disp('Scaling: none')
case 'mean'
disp('Scaling: mean centering')
case 'auto'
disp('Scaling: auto scaling')
end
function [] = dispcv(cv,split,iter)
switch lower(cv)
case 'loo'
disp('Cross validation: leave one out')
case 'vet'
disp(['Cross validation: venetian blinds w/ ', ...
num2str(split),' splits'])
case 'con'
disp(['Cross validation: contiguous block w/ ', ...
num2str(split),' splits'])
case 'rnd'
disp(['Cross validation: random samples w/ ',num2str(split), ...
' splits and ',num2str(iter),'iterations'])
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -