📄 polypls.m
字号:
function [p,q,w,t,u,b,ssqdif] = polypls(x,y,lv,n)
%POLYPLS PLS regression with polynomial inner-relation.
% The inputs are the matrix of predictor variables (x),
% the vector or matrix of the predicted variable (y),
% the maximum number of latent variables to consider (lv)
% and the order of the polynomial for the inner-relation
% (n). Outputs are the x-block loadings (p), the y-block
% loadings (q), the x-block weights (w), the x-block
% scores (t), the y-block scores (u), the matrix of inner-
% relation coefficients (b) and the variance explained
% (ssqdif). Use POLYPRED to make predictions with new data.
%
%I/O: [p,q,w,t,u,b,ssqdif] = polypls(x,y,lv,n);
%
%See also: LWRXY, NNPLS, PLS, POLYDEMO, POLYPRED, SPL_PLS
%Copyright Eigenvector Research, Inc. 1991-98
%Modified BMW 11/93
%Checked on MATLAB 5 by BMW
[mx,nx] = size(x);
[my,ny] = size(y);
p = zeros(nx,lv);
q = zeros(ny,lv);
w = zeros(nx,lv);
t = zeros(mx,lv);
u = zeros(my,lv);
b = zeros(n+1,lv);
ssq = zeros(lv,2);
ssqx = sum(sum(x.^2)');
ssqy = sum(sum(y.^2)');
for i = 1:lv
[pp,qq,ww,tt,uu] = plsnipal(x,y);
b(:,i) = (polyfit(tt,uu,n))';
x = x - tt*pp';
y = y - (polyval(b(:,i),tt))*qq';
ssq(i,1) = (sum(sum(x.^2)'))*100/ssqx;
ssq(i,2) = (sum(sum(y.^2)'))*100/ssqy;
t(:,i) = tt(:,1);
u(:,i) = uu(:,1);
p(:,i) = pp(:,1);
w(:,i) = ww(:,1);
q(:,i) = qq(:,1);
end
ssqdif = zeros(lv,2);
ssqdif(1,1) = 100 - ssq(1,1);
ssqdif(1,2) = 100 - ssq(1,2);
for i = 2:lv
for j = 1:2
ssqdif(i,j) = -ssq(i,j) + ssq(i-1,j);
end
end
disp(' ')
disp(' Percent Variance Captured by PolyPLS Model ')
disp(' ')
disp(' -----X-Block----- -----Y-Block-----')
disp(' LV # This LV Total This LV Total ')
disp(' ---- ------- ------- ------- -------')
ssq = [(1:lv)' ssqdif(:,1) cumsum(ssqdif(:,1)) ssqdif(:,2)...
cumsum(ssqdif(:,2))];
format = ' %3.0f %6.2f %6.2f %6.2f %6.2f';
for i = 1:lv
tab = sprintf(format,ssq(i,:)); disp(tab)
end
disp(' ')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -