📄 plsrsgn.m
字号:
function coeff = plsrsgn(data,lv,out)
%PLSRSGN Generates a matrix of PLS models for MSPC
% This function constructs a matrix of PLS models that
% can be used like a PCA model for multivariate statistical
% process control (MSPC) purposes. Given a data matrix (data)
% a PLS model is formed using (lv) latent variables that
% relates each variable to all the others. An optional
% variable (out) allows the user to suppress intermediate
% output [out=0 suppresses output]. The PLS model regression
% vectors are collected in an output matrix (coeff) which
% can be used like the I=PP' matrix in PCA.
%
%I/O: coeff = plsrsgn(data,lv,out);
%
%See also: PLSRSGCV, REPLACE, RPLCDEMO, RSGNDEMO
%Copyright Eigenvector Research, Inc. 1991-2000
%Modified NBG 10/96, 3/98
%nbg 11/00 removed missdat from see also
if nargin<3, out = 1; end
[m,n] = size(data);
if lv >= n
error('Number of latent variables must be < number of variables.')
end
coeff = -eye(n);
for i = 1:n
if out ~= 0
s = sprintf('The PLS model results follow for variable number %g',i);
disp(s)
end
m = pls([data(:,1:i-1) data(:,i+1:n)],data(:,i),lv,out);
m = m(lv,:)';
for j = 1:n-1
if i>j
coeff(j,i) = m(j,1);
end
if i<=j
coeff(j+1,i) = m(j,1);
end
end
end
coeff = -1*coeff;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -