📄 bigpca.m
字号:
function [scores,loads,ssq,res,q,tsq,tsqs] = bigpca(data,maxpc,plots,ss,ls)
%BIGPCA Principal components analysis for BIG matrices
% This function uses svd to perform pca on a large data matrix.
% It is assumed that samples are rows and variables are columns.
% Inputs are the input matrix (data), and the maximum
% number of PCs to calculate (maxpc), an optional variable
% (plots) that controls the graphs produced (see below), and
% two optional ploting scale vectors for the scores (ss)
% and for the loadings (ls) for plotting scores and loads against.
% The outputs are the scores (scores), loadings (loads),
% variance info (ssq), residuals (res), calculated q limit (q),
% t^2 limit (tsq) and t^2 values (tsqs).
%
%I/O: [scores,loads,ssq,res,q,tsq,tsqs] = bigpca(data,maxpc,plots,ss,ls);
%
% Set plots = 0 to suppress all plots, plots = 1 for plots with
% no confidence limits and plots = 2 for plots with limits.
% If you would like to scale the data before processing use the
% functions AUTO or SCALE. For smaller matrices, the PCA
% function is faster.
%
%See also: PCA, PLTSCRS, PLTLOADS, SIMCA
% Copyright Eigenvector Research, Inc. 1991-98
% Modified BMW 11/93, 1/95 NBG 4/96
% Modified BMW 11/98, 11/2000
if nargin < 3
plots = 1;
end
if plots > 2
error('Plot option must be 0, 1 or 2')
elseif plots < 0
error('Plot option must be 0, 1 or 2')
end
[m,n] = size(data);
if n < m
cov = zeros(n,n);
for i = 1:n
for j = 1:i
cov(i,j) = (data(:,i)'*data(:,j))/(m-1);
cov(j,i) = cov(i,j);
end
end
[u,s,v] = svd(cov);
temp2 = (1:maxpc)';
escl = 1:maxpc;
v = v(:,1:maxpc);
else
cov = zeros(m,m);
for i = 1:m
for j = 1:i
cov(i,j) = (data(i,:)*data(j,:)')/(m-1);
cov(j,i) = cov(i,j);
end
end
[u,s,v] = svd(cov);
v = (v(:,1:maxpc)'*data)';
for i = 1:maxpc
v(:,i) = v(:,i)/norm(v(:,i));
end
temp2 = (1:maxpc)';
escl = 1:maxpc;
end
mns = mean(data);
ssqmns = mns*mns';
ssqtot = sum(diag(cov));
clear cov
if ssqtot/ssqmns < 1e10
disp(' ')
disp('Warning: Data does not appear to be mean centered.')
disp('Variance captured table should be read as sum of')
disp('squares captured.')
end
temp = diag(s)*100/(sum(diag(s)));
temp = temp(1:maxpc);
ssq = [temp2 diag(s(1:maxpc,1:maxpc)) temp cumsum(temp)];
% This section calculates the standard errors of the
% eigenvalues and plots them
if plots == 2
eigmax = ssq(:,2)/(1-(1.96*sqrt(2/m)));
eigmin = ssq(:,2)/(1+(1.96*sqrt(2/m)));
clg
plot(escl,ssq(:,2),escl,eigmax,'--b',escl,eigmin,'--b',escl,ssq(:,2),'og')
title('Eigenvalue vs. PC Number showing 95% Confidence Limits')
xlabel('PC Number')
ylabel('Eigenvalue')
elseif plots == 1
clf
plot(escl,ssq(:,2),escl,ssq(:,2),'og')
title('Eigenvalue vs. PC Number')
xlabel('PC Number')
ylabel('Eigenvalue')
end
% Print out the amount of variance captured
disp(' ')
disp(' Percent Variance Captured by PCA Model')
disp(' ')
disp('Principal Eigenvalue % Variance % Variance')
disp('Component of Captured Captured')
disp(' Number Cov(X) This PC Total')
disp('--------- ---------- ---------- ----------')
format = ' %3.0f %3.2e %6.2f %6.2f';
for i = 1:maxpc
tab = sprintf(format,ssq(i,:)); disp(tab)
end
input('How many principal components do you want to keep? ');
nmaxpc = ans;
if nmaxpc > maxpc
disp('No. of PCs must be <= original number of PCs calculated')
str = sprintf('Setting number of PCs = %g',maxpc);
disp(str)
nmaxpc = maxpc;
else
maxpc = nmaxpc;
end
% Form the PCA Model Based on the Number of PCs Chosen
loads = v(:,1:maxpc);
scores = data*loads;
% Calculate the standard error on the PC loadings if needed
if plots == 2
loaderr = zeros(n,maxpc);
if n > m
nn = m;
else
nn = n;
end
ssqb = diag(s);
for i = 1:maxpc
dif = (ssqb-ones(nn,1)*ssqb(i)).^2;
dif = sort(dif);
sig = sum((ones(nn-1,1)*ssqb(i))./dif(2:nn,1));
loaderr(:,i) = ((ssqb(i)/m)*loads(:,i).^2)*sig;
end
loadmax = loads+loaderr;
loadmin = loads-loaderr;
end
% Calculate the residuals matrix and Q values
res = zeros(m,1);
for i = 1:m
data(i,:) = (data(i,:) - scores(i,:)*loads');
res(i) = sum(data(i,:).^2);
end
clear data
% Create the scale vectors to plot against
if plots >= 1.0
if nargin < 4
ss = 1:m;
scllim = [1 m];
else
scllim = [min(ss) max(ss)];
end
if nargin < 5
ls = 1:n;
end
temp = [1 1];
for i = 1:maxpc
pclim = sqrt(s(i,i))*temp*1.96;
plot(ss,scores(:,i),scllim,pclim,'--b',scllim,-pclim,'--b')
%hold on, plot(ss,scores(:,i),'+g'), hold off
xlabel('Sample Number')
str = sprintf('Score on PC# %g',i);
ylabel(str)
title('Sample Scores with 95% Limits')
pause
if plots == 2
plot(ls,loads(:,i),ls,loadmax(:,i),'--b',...
ls,loadmin(:,i),'--b',[min(ls) max(ls)],[0 0]) %ls,loads(:,i),'og',
elseif plots == 1
plot(ls,loads(:,i),[min(ls) max(ls)],[0 0]) %,ls,loads(:,i),'og'
end
xlabel('Variable Number')
str = sprintf('Loadings for PC# %g',i);
ylabel(str)
if plots == 2
str = sprintf('Variable # vs. Loadings for PC# %g Showing Standard Errors',i);
title(str)
else
str = sprintf('Variable Number vs. Loadings for PC# %g',i);
title(str)
end
pause
end
end
% Calculate Q limit using unused eigenvalues
temp = diag(s);
if n < m
emod = temp(maxpc+1:n,:);
else
emod = temp(maxpc+1:m,:);
end
th1 = sum(emod);
th2 = sum(emod.^2);
th3 = sum(emod.^3);
h0 = 1 - ((2*th1*th3)/(3*th2^2));
if h0 <= 0.0
h0 = .0001;
disp(' ')
disp('Warning: Distribution of unused eigenvalues indicates that')
disp(' you should probably retain more PCs in the model.')
end
q = th1*(((1.65*sqrt(2*th2*h0^2)/th1) + 1 + th2*h0*(h0-1)/th1^2)^(1/h0));
disp(' ')
disp('The 95% Q limit is')
disp(q)
if plots >= 1
lim = [q q];
plot(ss,res,scllim,lim,'--b') %,ss,res,'+g'
str = sprintf('Process Residual Q with 95 Percent Limit Based on %g PC Model',maxpc);
title(str)
xlabel('Sample Number')
ylabel('Residual')
pause
end
% Calculate T^2 limit using ftest routine
if maxpc > 1
if m > 300
tsq = (maxpc*(m-1)/(m-maxpc))*ftest(.05,maxpc,300);
else
tsq = (maxpc*(m-1)/(m-maxpc))*ftest(.05,maxpc,m-maxpc);
end
disp(' ')
disp('The 95% T^2 limit is')
disp(tsq)
% Calculate the value of T^2 by normalizing the scores to
% unit variance and summing them up
temp2 = scores*inv(diag(ssq(1:maxpc,2).^.5));
tsqs = sum((temp2.^2)');
if plots >= 1.0
tlim = [tsq tsq];
plot(ss,tsqs,scllim,tlim,'--b') %,ss,tsqvals,'+g'
str = sprintf('Value of T^2 with 95 Percent Limit Based on %g PC Model',maxpc);
title(str)
xlabel('Sample Number')
ylabel('Value of T^2')
end
else
disp('T^2 not calculated when number of latent variables = 1')
tsq = 1.96^2;
tsqs = scores.^2/ssq(1,2);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -