⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 p67.f90

📁 I[1].M.Smith所著的《有限元方法编程》第三版Fortran程序
💻 F90
字号:
    program p67      
!-----------------------------------------------------------------------
!      program 6.7 three-d strain of an elastic-plastic(Mohr-Coulomb) solid
!      using 20-node brick elements; viscoplastic strain method
!------------------------------------------------------------------------
 use new_library  ;   use geometry_lib  ;      implicit none
 integer::nels,nxe,nze,neq,nn,nr,nip,nodof=3,nod=20,nst=6,ndof,               &
          i,k,iel,iters,limit,incs,iy,ndim=3,loaded_nodes
 logical::converged   ; character (len=15) :: element='hexahedron'
 real::e,v,det,phi,c,psi,dt,f,dsbar,dq1,dq2,dq3,lode_theta,presc,             &
           sigm,pi,snph,cons,ptot,aa,bb,cc,tol                                 
!---------------------------- dynamic arrays-----------------------------------
 real   ,allocatable ::  kv(:),loads(:),points(:,:),bdylds(:),evpt(:,:,:),    &
                         dee(:,:),coord(:,:),jac(:,:),weights(:),oldis(:),    &
                         der(:,:),deriv(:,:),bee(:,:),km(:,:),eld(:),eps(:),  &
                         sigma(:),bload(:),eload(:),erate(:),g_coord(:,:),    &
                         evp(:),devp(:),m1(:,:),m2(:,:),m3(:,:),flow(:,:),    &
                         val(:),storkv(:),tensor(:,:,:),stress(:),totd(:)   
 integer, allocatable :: nf(:,:) , g(:), no(:) ,num(:), g_num(:,:) ,g_g(:,:), &
                         kdiag(:)                                              
!--------------------------input and initialisation----------------------------
  open (10,file='p67.dat',status=    'old',action='read')
  open (11,file='p67.res',status='replace',action='write')                    
  read (10,*) phi,c,psi,e,v,cons,    nels,nxe,nze,nn,nip,aa,bb,cc
  ndof=nod*nodof   
  allocate (nf(nodof,nn), points(nip,ndim),weights(nip),g_coord(ndim,nn),     &
            num(nod),dee(nst,nst),evpt(nst,nip,nels),tensor(nst,nip,nels),    &
            coord(nod,ndim),g_g(ndof,nels), stress(nst),                      &
            jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels),     &
            bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst),        &
            bload(ndof),eload(ndof),erate(nst),evp(nst),devp(nst),g(ndof),    &
            m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst))                 
  nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)
  call formnf(nf); neq=maxval(nf)  ;   allocate(kdiag(neq))     ; kdiag = 0
!---------- loop the elements to set up global arrays and kdiag ---------------
      elements_1:   do iel = 1 , nels
                       call geometry_20bxz(iel,nxe,nze,aa,bb,cc,coord,num)
                       call num_to_g ( num , nf , g ) 
                       g_num(:,iel)=num; g_coord(:,num)=transpose(coord)
                       g_g( : , iel ) = g  ;  call fkdiag(kdiag,g)
      end do elements_1 
    write(11,'(a)') "Global coordinates "
    do k=1,nn;write(11,'(a,i5,a,3e12.4)')"Node",k,"       ",g_coord(:,k);end do
    write(11,'(a)') "Global node numbers "
    do k = 1 , nels; write(11,'(a,i5,a,20i3)')                                 &
                             "Element ",k,"        ",g_num(:,k); end do
      kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do
   write(11,'(a,i5,a,i5)')                                                     &
           "There are ",neq,"  equations and the skyline storage is",kdiag(neq)
 allocate(kv(kdiag(neq)),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq)) 
           kv=0.0; oldis=0.0; totd=0.0 
  call deemat(dee,e,v); call sample(element,points,weights)
  pi = acos( -1. ); snph = sin(phi*pi/180.)
  dt=4.*(1.+v)*(1.-2.*v)/(e*(1.-2.*v+snph*snph))   ; tensor = .0
  write(11,'(a,e12.4)') "The critical timestep is   ",dt
!---------- element stiffness integration and assembly & set initial stress--- 
 elements_2: do iel = 1 , nels
                num = g_num(: , iel ) ; coord = transpose (g_coord(:,num )) 
                g = g_g( : , iel )    ;     km=0.0   
             gauss_pts_1:  do i =1 , nip    
               tensor(1:3,i,iel)=cons
               call shape_der (der,points,i);  jac = matmul(der,coord) 
               det = determinant(jac)  ;   call invert(jac)
               deriv = matmul(jac,der) ;   call beemat (bee,deriv)           
               km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)
             end do gauss_pts_1   
             call fsparv (kv,km,g,kdiag)
 end do elements_2                                                             
!--------------- read prescribed displacements and factorise l.h.s. -----------
    read(10,*) loaded_nodes ; allocate(no(loaded_nodes),storkv(loaded_nodes))
    read(10,*)no ,presc, incs, tol, limit 
    do i=1,loaded_nodes   
         kv(kdiag(nf(3,no(i))))=kv(kdiag(nf(3,no(i)))) + 1.e20
         storkv(i)=kv(kdiag(nf(3,no(i))))
    end do 
         call sparin (kv,kdiag)                                                 
!-------------------displacement increment loop-------------------------------
    load_increments: do iy=1,incs
    ptot = presc * iy
    write(11,'(/,a,i5)')"Load increment ",iy ;  iters=0;  bdylds=.0;  evpt=.0
!------------------------   iteration loop   ---------------------------------
   iterations: do
    iters=iters+1; loads =.0 
      do i=1,loaded_nodes;loads(nf(3,no(i)))=storkv(i)*presc; end do
      loads=loads+bdylds; call spabac(kv,loads,kdiag)
!----------------------   check convergence -----------------------------------
      call checon(loads,oldis,tol,converged)
      if(iters==1)converged=.false. ;  if(converged.or.iters==limit)bdylds=.0
!--------------------- go round the Gauss Points  -----------------------------
      elements_3: do iel = 1 , nels
       bload=.0
       num = g_num( : ,iel ) ; coord = transpose(g_coord( : , num ))
       g = g_g( : , iel )    ;   eld = loads ( g )         
       gauss_points_2 : do i = 1 , nip
          call shape_der ( der,points,i); jac=matmul(der,coord)
          det = determinant(jac);call invert(jac) ;  deriv = matmul(jac,der) 
          call beemat (bee,deriv);eps=matmul(bee,eld); eps=eps-evpt(:,i,iel)
          sigma=matmul(dee,eps) ;  stress = sigma + tensor(:,i,iel)
          call invar(stress,sigm,dsbar,lode_theta)
!-------------------  check whether yield is violated -------------------------
         call mocouf (phi, c , sigm, dsbar , lode_theta , f )
         if(converged.or.iters==limit) then
         devp=stress 
           else
           if(f>=.0) then
           call mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
           call formm(stress,m1,m2,m3);  flow=f*(m1*dq1+m2*dq2+m3*dq3)
           erate=matmul(flow,stress)
           evp=erate*dt; evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=matmul(dee,evp) 
         end if; end if
      if(f>=.0) then
        eload=matmul(devp,bee) ; bload=bload+eload*det*weights(i)
      end if
    if(converged.or.iters==limit) then
!-----------------------update the Gauss point stresses -----------------------
                 tensor(:,i,iel) = stress 
    end if
    end do gauss_points_2
!-------------------  compute the total bodyloads vector-----------------------
    bdylds( g ) = bdylds( g ) + bload      ; bdylds(0) = .0
  end do elements_3             
  if(converged.or.iters==limit)exit
 end do iterations
 totd = totd + loads
 write(11,'(a,e12.4)') "The displacement is ",totd(1) 
 write(11,'(a)') "   sigma z     sigma x     sigma y"
 write(11,'(3e12.4)') tensor(3,1,1),tensor(1,1,1),tensor(2,1,1)
 write(11,'(a,i5,a)') "It took",iters,"  iterations to converge"
 if(iters==limit)stop
end do load_increments
end program p67

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -