📄 p104.f90
字号:
program p104
!------------------------------------------------------------------------------
! program 10.4 eigenvalues and eigenvectors of a
! rectangular elastic solid in plane strain using
! uniform 4-node quadrilateral elements : kind = 1 precision
! for lumped mass this is done element by element
!------------------------------------------------------------------------------
use libks ; use new_library ; use geometry_lib ; implicit none
integer::nels,nye,neq,nn,nr,nip,nodof=2,nod=4,nst=3,ndof, &
i,k,iel,ndim=2,nmodes,jflag,iflag=-1,itape=1,lp=6 , &
lalfa=500,leig=20, lx=80, lz=500 ,iters ,neig = 0
real::aa,bb,rho,e,v,det , el,er, acc = 1.e-6
character (len=15) :: element = 'quadrilateral'
!--------------------------- dynamic arrays------------------------------------
real,allocatable :: points(:,:),dee(:,:),coord(:,:),vdiag(:), &
fun(:),jac(:,:),der(:,:),deriv(:,:),weights(:), &
bee(:,:),km(:,:),emm(:,:),ecm(:,:),g_coord(:,:), &
ua(:),va(:),eig(:),x(:),del(:), udiag(:),diag(:),&
alfa(:),beta(:),w1(:),y(:,:),z(:,:),pmul(:),utemp(:)
integer, allocatable :: nf(:,:), g(:) , num(:) , g_num(:,:) , g_g (:,:),&
nu(:),jeig(:,:)
!----------------------input and initialisation--------------------------------
open (10,file='p104.dat',status= 'old',action='read')
open (11,file='p104.res',status='replace',action='write')
open ( 1,file='p104.tem',form='unformatted')
read (10,*) nels,nye,nn,nip,aa,bb,rho,e,v,nmodes,el,er
ndof=nod*nodof
allocate ( nf(nodof,nn), points(nip,ndim),dee(nst,nst), g_coord(ndim,nn), &
coord(nod,ndim),fun(nod),jac(ndim,ndim), weights(nip), &
g_num(nod,nels),der(ndim,nod),deriv(ndim,nod),bee(nst,ndof), &
num(nod),km(ndof,ndof),g(ndof),g_g(ndof,nels),emm(ndof,ndof), &
ecm(ndof,ndof),eig(leig),x(lx),del(lx),nu(lx),jeig(2,leig), &
alfa(lalfa),beta(lalfa),z(lz,leig),pmul(ndof),utemp(ndof))
nf=1; read(10,*) nr ; if(nr>0) read(10,*) (k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf)
!------------------ loop the elements to set up global arrays ----------------
elements_1 : do iel =1,nels
call geometry_4qy(iel,nye,aa,bb,coord,num)
call num_to_g ( num , nf , g )
g_num(:,iel)=num;g_coord(:,num)=transpose(coord);g_g(:,iel)=g
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,2e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k = 1 , nels; write(11,'(a,i5,a,4i5)') &
"Element ",k," ",g_num(:,k); end do
write(11,'(a,i5,a)') "There are ",neq," equations to be solved"
allocate ( ua(0:neq),va(0:neq),vdiag(0:neq), &
diag(0:neq),udiag(0:neq),w1(0:neq), y(0:neq,leig))
ua = .0 ; va = .0 ; eig = .0
jeig = 0; x=.0; del=.0; nu=0; alfa=.0; beta=.0
diag = .0 ; udiag = .0 ; w1 = .0 ; y=.0; z=.0
call sample( element, points, weights); call deemat(dee,e,v)
!--------------- element stiffness integration and assembly--------------------
elements_2: do iel=1,nels
num = g_num(:,iel); coord =transpose( g_coord(:, num ))
g = g_g( : , iel ); km=0.0 ; emm=0.0
integrating_pts_1: do i=1,nip
call shape_fun(fun,points,i)
call shape_der(der,points,i); jac=matmul(der,coord)
det= determinant(jac) ; call invert(jac)
deriv = matmul(jac,der);call beemat(bee,deriv)
km= km+matmul(matmul(transpose(bee),dee),bee)*det*weights(i)
call ecmat(ecm,fun,ndof,nodof);emm=emm+ecm*det*weights(i)*rho
end do integrating_pts_1
do i=1,ndof; diag(g(i))=diag(g(i))+sum(emm(i,:));end do
end do elements_2
!------------------------------find eigenvalues--------------------------------
diag = 1. / sqrt(diag) ; diag(0) = .0 ! diag holds l**(-1/2)
do iters = 1 , lalfa
call lancz1(neq,el,er,acc,leig,lx,lalfa,lp,itape,iflag,ua,va, &
eig,jeig,neig,x,del,nu,alfa,beta)
if(iflag==0) exit
if(iflag>1) then
write(11,'(a,i5)') &
" Lancz1 is signalling failure, with iflag = ", iflag
stop
end if
!----- iflag = 1 therefore form u + a * v ( done element by element )---------
vdiag = va ; vdiag = vdiag * diag ! vdiag is l**(-1/2).va
udiag = .0 ; vdiag(0)=.0
elements_3 : do iel = 1 , nels
g = g_g( : , iel )
pmul = vdiag (g); utemp = matmul(km,pmul)
udiag(g) = udiag(g) + utemp ! udiag is A.l**(-1/2).va
end do elements_3
udiag = udiag * diag ; ua = ua + udiag
end do
!-------------- iflag = 0 therefore write out the spectrum --------------------
write(11,'(2(a,e12.4))') "The range is",el," to ",er
write(11,'(a,i5,a)') "It took ",iters," iterations"
write(11,'(a)') "The eigenvalues are :"
write(11,'(6e12.4)') eig(1:neig)
! calculate the eigenvectors
if(neig>10)neig = 10
call lancz2(neq,lalfa,lp,itape,eig,jeig,neig,alfa,beta,lz,jflag,y,w1,z)
!------------------if jflag is zero calculate the eigenvectors ---------------
if (jflag==0) then
write(11,'(a)') "The eigenvectors are :"
do i = 1 , nmodes
udiag(:) = y(:,i) ; udiag = udiag * diag
write(11,'("Eigenvector number ",i4," is: ")') i
write(11,'(6e12.4)') udiag(1:)
end do
else
! lancz2 fails
write(11,'(a,i5)')" Lancz2 is signalling failure with jflag = ", jflag
end if
end program p104
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -