📄 p56.f90
字号:
program p56
!------------------------------------------------------------------------
! program 5.6 three dimensional analysis of an elastic
! solid using 4-node tetrahedral elements
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,neq,nn,nr,nip,nodof=3,nod=4,nst=6,ndof,loaded_nodes, &
i,k,iel,ndim=3
real:: e,v,det ; character(len=15) :: element = 'tetrahedron'
!--------------------------- dynamic arrays------------------------------------
real ,allocatable :: kv(:),loads(:),points(:,:),dee(:,:),coord(:,:), &
jac(:,:),weights(:), der(:,:), deriv(:,:),bee(:,:), &
km(:,:),eld(:),sigma(:),g_coord(:,:)
integer, allocatable :: nf(:,:), g(:), kdiag(:) ,num(:) ,g_num(:,:),g_g(:,:)
!--------------------------input and initialisation----------------------------
open (10,file='p56.dat',status= 'old',action='read')
open (11,file='p56.res',status='replace',action='write')
read (10,*) nels,nn,nip,e,v ; ndof=nod*nodof
allocate ( nf(nodof,nn), points(nip,ndim),dee(nst,nst),coord(nod,ndim), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g(ndof), &
bee(nst,ndof), km(ndof,ndof),eld(ndof),sigma(nst),g_g(ndof,nels),&
g_coord(ndim,nn),g_num(nod,nels),weights(nip),num(nod))
read (10, *) g_coord ; read (10, *) g_num
nf=1; read(10,*) nr ;if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf) ; allocate ( loads(0:neq),kdiag(neq) )
call deemat (dee,e,v); call sample(element,points,weights)
kdiag=0
! ------------- loop the elements to set up g_g and kdiag ----------------
elements_1 : do iel = 1 , nels
num = g_num(:,iel); call num_to_g(num,nf,g)
g_g(:,iel) = g ; call fkdiag(kdiag,g)
end do elements_1
kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do
allocate(kv(kdiag(neq))) ; kv=0.0
write(11,'(a)') "Global Coordinates"
do k=1,nn;write(11,'(a,i5,a,3e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global Node Numbers"
do k=1,nels; write(11,'(a,i5,a,4i5)') &
"Element",k," ",g_num(:,k); end do
write(11,'(2(a,i5))') &
"There are ",neq," equations and the skyline storage is",kdiag(neq)
loads=0.0 ; read (10,*) loaded_nodes,(k,loads(nf(:,k)),i=1,loaded_nodes)
write(11,'(a,e12.4)') " The total load is ", sum(loads)
!--------------- element stiffness integration and assembly-------------------
elements_2: do iel = 1 , nels
num = g_num(:,iel) ; g = g_g(:,iel)
coord = transpose(g_coord(:,num)) ; km=0.0
gauss_pts_1: do i =1 , nip
call shape_der (der,points,i); jac = matmul(der,coord)
det = determinant(jac); call invert (jac)
deriv = matmul(jac,der); call beemat (bee,deriv)
km=km+matmul(matmul(transpose(bee),dee),bee)*det*weights(i)
end do gauss_pts_1
call fsparv (kv,km,g,kdiag)
end do elements_2
!---------------------------equation solution----------------------------------
call sparin(kv,kdiag) ;call spabac(kv,loads,kdiag)
write(11,'(a)') "The nodal displacements are :"
write(11,'(a)') " Node Displacement"
do k=1,nn; write(11,'(i5,a,3e12.4)')k," ",loads(nf(:,k)); end do
!----------------------recover stresses at element Gauss-points----------------
elements_3 : do iel = 1 , nels
num = g_num(:,iel); coord = transpose(g_coord( : , num ))
g=g_g(:,iel) ; eld = loads( g )
write(11,'(a,i5,a)') &
"The Gauss point stresses for element",iel," are"
gauss_pts_2: do i = 1,nip
call shape_der(der,points,i);jac = matmul(der,coord)
call invert(jac); deriv= matmul(jac,der)
call beemat(bee,deriv);sigma = matmul(dee,matmul(bee,eld))
write(11,'(a,i5)') "Point ",i ;write(11,'(6e12.4)')sigma
end do gauss_pts_2
end do elements_3
end program p56
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -