📄 p72.f90
字号:
program p72
!------------------------------------------------------------------------
! program 7.2 solution of Laplace's equation
! over an axisymmetric region using 4-node quadrilaterals
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,nxe,neq,nn,nr,nip,nodof=1,nod=4,ndof=4,lOaded_nodes,i,k, &
iel,ndim=2,fixed_nodes
real::det,aa,bb,radius ; character (len=15) :: element='quadrilateral'
!--------------------------- dynamic arrays---------------------------------
real,allocatable::kv(:),kvh(:),loads(:),points(:,:),coord(:,:),jac(:,:), &
der(:,:),deriv(:,:),weights(:),kp(:,:),g_coord(:,:), &
value(:),kay(:,:),disps(:),perms(:),fun(:)
integer,allocatable::nf(:,:),g(:),num(:),g_num(:,:),g_g(:,:),kdiag(:), &
node(:),no(:)
!------------------------input and initialisation--------------------------
open(10,file='p72.dat',status='old', action='read')
open(11,file='p72.res',status='replace',action='write')
read (10,*)nels,nxe,nip,aa,bb; nn=(nxe+1)*(nels/nxe+1)
allocate(nf(nodof,nn),points(nip,ndim),g(ndof),g_coord(ndim,nn), &
coord(nod,ndim),jac(ndim,ndim),fun(ndof),weights(nip), &
der(ndim,nod),deriv(ndim,nod),kp(ndof,ndof),num(nod), &
g_num(nod,nels),g_g(ndof,nels),kay(ndim,ndim),perms(ndim))
read(10,*)perms
kay=0.0; do i=1,ndim; kay(i,i)=perms(i); end do
read(10,*)nr
nf=1; if(nr>0)read(10,*)(k,nf(:,k),i=1,nr); call formnf(nf); neq=maxval(nf)
allocate (kdiag(neq))
!------- loop the elements to set up global geometry and kdiag ----------------
kdiag=0
elements_1: do iel=1,nels
call geometry_4qx(iel,nxe,aa,bb,coord,num)
g_num(:,iel)=num; g_coord(:,num)=transpose(coord)
call num_to_g(num,nf,g); g_g(:,iel)=g ; call fkdiag(kdiag,g)
end do elements_1
write(11,'(a)')"Global coordinates"
do k=1,nn
write(11,'(a,i5,a,3e12.4)')"Node ",k," ",g_coord(:,k); end do
write(11,'(a)')"Global node numbers"
do k=1,nels
write(11,'(a,i5,a,27i3)')"Element ",k," ",g_num(:,k); end do
kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do
write(11,'(2(a,i5),/)') &
"There are ",neq," equations and the skyline storage is ",kdiag(neq)
allocate(kv(kdiag(neq)),kvh(kdiag(neq)),loads(0:neq),disps(0:neq))
kv=0.0; loads=0.0 ; call sample(element,points,weights)
!--------------- element conductivity integration and assembly----------------
elements_2: do iel=1,nels
kp=0.0
num=g_num(:,iel); coord=transpose(g_coord(:,num)); g=g_g(:,iel)
integrating_pts_1: do i=1,nip
call shape_der(der,points,i); jac=matmul(der,coord)
det=determinant(jac); call invert(jac)
deriv=matmul(jac,der); call shape_fun(fun,points,i)
radius=sum(fun(:)*coord(:,1))
kp=kp+matmul(matmul(transpose(deriv),kay),deriv) &
*radius*det*weights(i)
end do integrating_pts_1
call fsparv(kv,kp,g,kdiag)
end do elements_2
kvh=kv
read (10,*)loaded_nodes
if(loaded_nodes/=0)read(10,*)(k,loads(nf(1,k)),i=1,loaded_nodes)
read (10,*) fixed_nodes
if(fixed_nodes/=0)then
allocate( node(fixed_nodes),no(fixed_nodes),value(fixed_nodes))
read(10,*) (node(i),value(i),i=1,fixed_nodes)
do i=1,fixed_nodes; no(i)=nf(1,node(i)); end do
kv(kdiag(no))=kv(kdiag(no))+1.e20; loads(no)=kv(kdiag(no))*value
end if
!------------------------equation solution-------------------------------------
call sparin(kv,kdiag); call spabac(kv,loads,kdiag)
!------------------------ retrieve flow rate ---------------------------------
call linmul_sky(kvh,loads,disps,kdiag)
write(11,'(a)')"The nodal values are:"
write(11,'(a)')" Potentials Flow rate"
do k=1,nn
write(11,'(i5,a,2f12.2)')k," ",loads(nf(1,k)),disps(nf(1,k)); end do
write(11,'(a)')" Inflow Outflow"
write(11,'(2f12.2)')sum(disps,mask=disps<.0),sum(disps,mask=disps>.0)
end program p72
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -