📄 p60.f90
字号:
program p60
!-----------------------------------------------------------------------
! program 6.0 plane strain of an elastic-plastic(Von Mises) solid
! using 8-node quadrilateral elements; viscoplastic strain method
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,nxe,nye,neq,nband,nn,nr,nip,nodof=2,nod=8,nst=4,ndof, &
loaded_nodes,i,k,iel,iters,limit,incs,iy,ndim=2
character (len = 15) :: element = 'quadrilateral'; logical::converged
real::e,v,det,cu,dt,ptot,f,dsbar,dq1,dq2,dq3,lode_theta,sigm,tol
!--------------------------- dynamic arrays-----------------------------------
real ,allocatable :: kb(:,:),loads(:),points(:,:),totd(:),bdylds(:), &
evpt(:,:,:),oldis(:),width(:),depth(:), &
tensor(:,:,:),val(:,:),stress(:),qinc(:), &
dee(:,:),coord(:,:),jac(:,:),weights(:), &
der(:,:),deriv(:,:),bee(:,:),km(:,:),eld(:),eps(:), &
sigma(:),bload(:),eload(:),erate(:),g_coord(:,:), &
evp(:),devp(:),m1(:,:),m2(:,:),m3(:,:),flow(:,:)
integer, allocatable :: nf(:,:) , g(:), no(:) ,num(:), g_num(:,:) ,g_g(:,:)
!----------------input and initialisation----------------------
open (10,file='p60.dat',status= 'old',action='read')
open (11,file='p60.res',status='replace',action='write')
read (10,*) cu,e,v,nels,nxe,nye,nn,nip,tol,limit
ndof=nod*nodof
allocate (nf(nodof,nn), points(nip,ndim),weights(nip),g_coord(ndim,nn), &
width(nxe+1),depth(nye+1),num(nod),dee(nst,nst),g_g(ndof,nels), &
evpt(nst,nip,nels), tensor(nst,nip,nels),coord(nod,ndim), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst), &
bload(ndof),eload(ndof),erate(nst),evp(nst),devp(nst),g(ndof), &
m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst),stress(nst))
nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf) ; read(10,*) width, depth
!---------- loop the elements to find nband and set up global arrays ----------
nband = 0
elements_1: do iel = 1 , nels
call geometry_8qyv(iel,nye,width,depth,coord,num)
call num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=transpose(coord); g_g(:,iel) = g
if (nband<bandwidth(g)) nband = bandwidth(g)
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,2e12.4)')"node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k=1,nels; write(11,'(a,i5,a,8i5)') &
"Element ",k," ",g_num(:,k); end do
write(11,'(a,i5,a,i5)') &
"There are ",neq ," equations and the half-bandwidth is ",nband
allocate(kb(neq,nband+1),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq))
kb=0.0; oldis=0.0; totd=0.0 ; tensor = 0.0
call deemat(dee,e,v); call sample(element,points,weights)
dt=4.*(1.+v)/(3.*e)
!------------------ element stiffness integration and assembly-----------------
elements_2: do iel = 1 , nels
num = g_num(:,iel) ; coord = transpose(g_coord(: ,num))
g = g_g(: ,iel ) ; km=0.0
gauss_pts_1: do i =1 , nip
call shape_der (der,points,i); jac = matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv)
km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)
end do gauss_pts_1
call formkb (kb,km,g)
end do elements_2
!------------------read load weightings and factorise equations----------------
read(10,*)loaded_nodes; allocate(no(loaded_nodes),val(loaded_nodes,ndim))
read(10,*)(no(i),val(i,:),i=1,loaded_nodes)
call cholin(kb)
!-------------------load increment loop---------------------------------------
read(10,*)incs; allocate(qinc(incs)); read(10,*) qinc
ptot=.0
load_increments: do iy=1,incs
write(11,'(a,i5)') 'increment',iy
ptot=ptot+qinc(iy) ; iters=0; bdylds=.0; evpt=.0
!-------------------- iteration loop ---------------------------------------
iterations: do
iters=iters+1; loads=.0
do i=1,loaded_nodes ; loads(nf(:,no(i)))=val(i,:)*qinc(iy) ; end do
loads=loads+bdylds ; call chobac(kb,loads)
!---------------------- check convergence ----------------------------------
call checon(loads,oldis,tol,converged)
if(iters==1)converged=.false. ; if(converged.or.iters==limit)bdylds=.0
!------------------- go round the Gauss Points --------------------------------
elements_3: do iel = 1 , nels
bload=.0
num = g_num( : ,iel ) ; coord = transpose (g_coord( : , num))
g = g_g( : , iel ) ; eld = loads ( g )
gauss_points_2 : do i = 1 , nip
call shape_der ( der,points,i); jac=matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv);eps=matmul(bee,eld)
eps = eps - evpt( : ,i , iel) ; sigma=matmul(dee,eps)
stress = sigma + tensor( : ,i , iel)
call invar(stress,sigm,dsbar,lode_theta)
!----------------- check whether yield is violated --------------------------
f=dsbar-sqrt(3.)*cu
if(converged.or.iters==limit) then
devp=stress
else
if(f>=.0) then
dq1=.0; dq2=1.5/dsbar; dq3=.0 ; call formm(stress,m1,m2,m3)
flow=f*(m1*dq1+m2*dq2+m3*dq3) ; erate=matmul(flow,stress)
evp = erate*dt; evpt(:,i,iel)=evpt(:,i,iel) + evp
devp=matmul(dee,evp)
end if; end if
if(f>=.0) then
eload=matmul(transpose(bee),devp) ; bload=bload+eload*det*weights(i)
end if
if(converged.or.iters==limit)then
!-------------------------- update the Gauss Point stresses -------------------
tensor( : , i , iel) = stress
end if
end do gauss_points_2
! compute the total bodyloads vector
bdylds( g ) = bdylds( g ) + bload ; bdylds(0) = .0
end do elements_3
if(converged.or.iters==limit)exit
end do iterations
totd=totd+loads
write(11,'(a,e12.4)') "The total load is ", ptot
write(11,'(a,10e12.4)')"Displacements are", &
(totd(nf(2,no(i))),i=1,loaded_nodes)
write(11,'(a,i5,a)')"It took ",iters ," iterations to converge"
if(iters==limit)stop
end do load_increments
end program p60
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -