📄 p68.f90
字号:
program p68
!-----------------------------------------------------------------------
! program 6.8 general strain of an elastic-plastic(Mohr-Coulomb)
! solid --- viscoplastic strain method
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,neq,nn,nr,nip,nodof,nod,nst,ndof,nprops,np_types, &
i,k,iel,iters,limit,incs,iy,ndim,loaded_nodes,fixed_nodes
logical::converged ; character (len=15) :: element
real::e,v,phi,c,psi, &
det,dt,ddt,f,dsbar,dq1,dq2,dq3,lode_theta,sigm,pi,snph,ptot,tol
!---------------------------- dynamic arrays-----------------------------------
real ,allocatable :: kv(:),loads(:),points(:,:),bdylds(:),oldis(:), &
dee(:,:),coord(:,:),fun(:),jac(:,:),weights(:), &
der(:,:),deriv(:,:),bee(:,:),km(:,:),eld(:),eps(:), &
sigma(:),bload(:),eload(:),erate(:),g_coord(:,:), &
evp(:),devp(:),m1(:,:),m2(:,:),m3(:,:),flow(:,:), &
val(:),storkv(:),tensor(:,:,:),stress(:),totd(:), &
evpt(:,:,:),value(:),load_store(:),prop(:,:)
integer, allocatable :: nf(:,:) , g(:), no(:) ,num(:), g_num(:,:) ,g_g(:,:), &
kdiag(:), sense(:), node(:) , etype(:)
!---------------------------input and initialisation---------------------------
open (10,file='p68.dat',status= 'old',action='read')
open (11,file='p68.res',status='replace',action='write')
read (10,*) element,nels,nn,nip,nodof,nod,nst,ndim,incs,tol,limit
ndof=nod*nodof
allocate (nf(nodof,nn), points(nip,ndim),weights(nip),g_coord(ndim,nn), &
num(nod),dee(nst,nst),evpt(nst,nip,nels),tensor(nst,nip,nels), &
coord(nod,ndim),g_g(ndof,nels),stress(nst),etype(nels), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst), &
bload(ndof),eload(ndof),erate(nst),evp(nst),devp(nst),g(ndof), &
m1(nst,nst),m2(nst,nst),m3(nst,nst),flow(nst,nst))
read(10,*) nprops , np_types
allocate(prop(nprops,np_types)) ; read(10,*) prop
etype = 1 ; if(np_types>1) read(10,*) etype
!---------------------- read geometry and connectivity ------------------------
read(10,*) g_coord; read(10,*) g_num
nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf) ; allocate(kdiag(neq)) ; kdiag = 0
!--------- loop the elements to set up global arrays and kdiag ----------------
elements_1: do iel = 1 , nels
num = g_num(:,iel); coord = transpose(g_coord(:,num))
call num_to_g( num , nf , g )
g_g( : , iel ) = g ; call fkdiag(kdiag,g)
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,3e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k = 1 , nels; write(11,'(a,i5,a,27i3)') &
"Element ",k," ",g_num(:,k); end do
kdiag(1)=1; do i=2,neq; kdiag(i)=kdiag(i)+kdiag(i-1); end do
write(11,'(a,i5,a,i5,a)') &
"The skyline storage is", kdiag(neq),"and there are",neq," equations"
allocate(kv(kdiag(neq)),loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq), &
load_store(0:neq))
kv=0.0; oldis=0.0; totd=0.0
call sample(element,points,weights) ; pi = acos( -1. )
dt = 100.
do iel = 1 , nels
e = prop(1,etype(iel)); v = prop(2,etype(iel))
snph = sin(prop(3,etype(iel))*pi/180.)
ddt=4.*(1.+v)*(1.-2.*v)/(e*(1.-2.*v+snph*snph))
if(ddt<dt)dt=ddt
end do
write(11,'(a,e12.4)') "The critical timestep is ",dt
!---------- element stiffness integration and assembly & set stresses--------
elements_2: do iel = 1 , nels
num = g_num(: , iel) ; coord = transpose(g_coord(: , num ))
g = g_g( : , iel ) ; km=0.0 ; tensor = .0
gauss_pts_1: do i =1 , nip
tensor(1:3 , i , iel) = prop( 6 , etype(iel) )
e=prop(1,etype(iel)); v=prop(2,etype(iel)); call deemat(dee,e,v)
call shape_der (der,points,i); jac = matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv)
km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)
end do gauss_pts_1
call fsparv (kv,km,g,kdiag)
end do elements_2
!------------ read prescribed loads/displacements and factorise l.h.s. -------
read(10,*) loaded_nodes
if(loaded_nodes/=0) then
read(10,*)(k,loads(nf(:,k)),i=1,loaded_nodes); load_store = loads
end if
read(10,*) fixed_nodes
if(fixed_nodes /=0) then
allocate(node(fixed_nodes),sense(fixed_nodes),value(fixed_nodes), &
no(fixed_nodes),storkv(fixed_nodes))
read(10,*) (node(i), sense(i), value(i),i=1,fixed_nodes)
do i=1,fixed_nodes; no(i)=nf(sense(i),node(i)); end do
kv(kdiag(no)) = kv(kdiag(no)) + 1.e20 ; storkv = kv(kdiag(no))
end if
call sparin (kv,kdiag)
!-------------------displacement increment loop-------------------------------
load_increments: do iy=1,incs
ptot = value(1) * iy
write(11,'(a,i5)')"Load increment",iy ; iters=0; bdylds=.0; evpt=.0
!-------------------------- iteration loop --------------------------------
iterations: do
iters=iters+1; loads =.0
if(loaded_nodes/=0) loads = load_store
if(fixed_nodes/=0) loads(no) = storkv * value
loads=loads+bdylds; call spabac(kv,loads,kdiag)
!-------------------------- check convergence -------------------------------
call checon(loads,oldis,tol,converged)
if(iters==1)converged=.false. ; if(converged.or.iters==limit)bdylds=.0
!------------------------ go round the Gauss Points ---------------------------
elements_3: do iel = 1 , nels
bload=.0
num = g_num( : , iel ) ; coord = transpose(g_coord( : , num ))
g = g_g( : , iel ) ; eld = loads ( g )
gauss_points_2 : do i = 1 , nip
call shape_der ( der,points,i); jac=matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv);eps=matmul(bee,eld)
eps=eps-evpt(:,i,iel); sigma=matmul(dee,eps)
stress = sigma + tensor(:,i,iel)
call invar(stress,sigm,dsbar,lode_theta)
!------------------- check whether yield is violated -------------------------
phi = prop(3,etype(iel));c=prop(4,etype(iel)); psi=prop(5,etype(iel))
call mocouf (phi, c , sigm, dsbar , lode_theta , f )
if(converged.or.iters==limit) then
devp=stress
else
if(f>=.0) then
call mocouq(psi,dsbar,lode_theta,dq1,dq2,dq3)
call formm(stress,m1,m2,m3)
flow=f*(m1*dq1+m2*dq2+m3*dq3) ; erate=matmul(flow,stress)
evp=erate*dt; evpt(:,i,iel)=evpt(:,i,iel)+evp; devp=matmul(dee,evp)
end if; end if
if(f>=.0) then
eload=matmul(devp,bee) ; bload=bload+eload*det*weights(i)
end if
if(converged.or.iters==limit) then
!----------------------- update the Gauss point stresses ----------------------
tensor ( : , i , iel) = stress
end if
end do gauss_points_2
!----------------------- compute the total bodyloads vector -------------------
bdylds( g ) = bdylds( g ) + bload ; bdylds(0) = .0
end do elements_3
if(converged.or.iters==limit)exit
end do iterations
totd = totd + loads
write(11,'(a,e12.4)') "The displacement is ",totd(1)
write(11,'(a)')" The stresses are "
write(11,'(6e12.4)') tensor(: , 1 , 1)
write(11,'(a,i5,a)') "It took",iters," iterations to converge"
if(iters==limit)stop
end do load_increments
end program p68
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -