📄 p82.f90
字号:
program p82
!------------------------------------------------------------------------------
! program 8.2 diffusion - convection equation on rectangular
! area using 4-node quadrilateral elements
! self-adjoint transformation
! implicit integration in time using 'theta' method
!------------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,nxe,neq,nband,nn,nr,nip,nodof=1,nod=4,ndof,ndim=2, &
i,j,k,iel,nstep,npri
real::aa,bb,permx,permy,det,theta,dtim,ux,uy,time,f1,f2
character (len=15) :: element = 'quadrilateral'
!---------------------------- dynamic arrays----------------------------------
real ,allocatable ::kb(:,:),pb(:,:),loads(:),points(:,:),kay(:,:),coord(:,:),&
fun(:),jac(:,:),der(:,:),deriv(:,:),weights(:), &
kp(:,:), pm(:,:), ans(:) ,funny(:,:),g_coord(:,:)
integer, allocatable :: nf(:,:), g(:) , num(:) , g_num(:,:) ,g_g(:,:)
!-------------------------input and initialisation-----------------------------
open (10,file='p82.dat',status= 'old',action='read')
open (11,file='p82.res',status='replace',action='write')
read (10,*) nels,nxe,nn,nip,aa,bb,permx,permy,ux,uy, &
dtim,nstep,theta,npri
ndof=nod*nodof
allocate ( nf(nodof,nn), points(nip,ndim),weights(nip),kay(ndim,ndim), &
coord(nod,ndim), fun(nod), jac(ndim,ndim),g_coord(ndim,nn), &
der(ndim,nod), deriv(ndim,nod), pm(ndof,ndof),g_num(nod,nels), &
kp(ndof,ndof), g(ndof),funny(1,nod),num(nod),g_g(ndof,nels))
kay=0.0 ; kay(1,1)=permx; kay(2,2)=permy
call sample(element,points,weights)
nf=1; read(10,*) nr ; if(nr>0)read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf);neq=maxval(nf)
!----------loop the elements to find nband and set up global arrays -----------
nband = 0
elements_1: do iel = 1 , nels
call geometry_4qx(iel,nxe,aa,bb,coord,num)
g_num(:,iel) = num; g_coord(:,num) = transpose(coord)
call num_to_g(num,nf,g); g_g( : , iel ) = g
if(nband<bandwidth(g)) nband = bandwidth(g)
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,2e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k = 1 , nels; write(11,'(a,i5,a,4i5)') &
"Element ",k," ",g_num(:,k); end do
allocate(kb(neq,nband+1),pb(neq,nband+1),loads(0:neq),ans(0:neq))
kb = 0.; pb = 0. ; loads = .0
write(11,'(2(a,i5))') &
"There are ",neq," equations and the half-bandwidth is ",nband
!------- element integration and assembly-------------------------------------
elements_2: do iel = 1 , nels
num = g_num(:,iel) ; coord = transpose(g_coord(: , num ))
g = g_g( : , iel ) ; kp=0.0 ; pm=0.0
gauss_pts: do i =1 , nip
call shape_der (der,points,i) ; call shape_fun(fun,points,i)
funny(1,:)=fun(:) ; jac = matmul(der,coord)
det=determinant(jac); call invert(jac); deriv = matmul(jac,der)
kp = kp + matmul(matmul(transpose(deriv),kay),deriv) &
*det*weights(i)
pm = pm + matmul( transpose(funny),funny)*det*weights(i)
end do gauss_pts
kp = kp + pm*(ux*ux/permx+uy*uy/permy)*.25
pm = pm/(theta*dtim)
!------------------- derivative boundary conditions ---------------------------
if(iel==1) then
kp(2,2)=kp(2,2)+uy*aa/6.; kp(2,3)=kp(2,3)+uy*aa/12.
kp(3,2)=kp(3,2)+uy*aa/12.; kp(3,3)=kp(3,3)+uy*aa/6.
else if(iel==nels) then
kp(1,1)=kp(1,1)+uy*aa/6.; kp(1,4)=kp(1,4)+uy*aa/12.
kp(4,1)=kp(4,1)+uy*aa/12.; kp(4,4)=kp(4,4)+uy*aa/6.
end if
call formkb (kb,kp,g) ; call formkb(pb,pm,g)
end do elements_2
!------------------------factorise left hand side----------------------------
f1=uy*aa/(2.*theta); f2 = f1
pb = pb + kb; kb = pb - kb/theta ; call cholin(pb)
!-------------------time stepping recursion-----------------------------------
write(11,'(a,i5)') " Time Concentration at node " , nn
timesteps: do j=1,nstep
time=j*dtim ; call banmul(kb,loads,ans)
ans(neq)=ans(neq)+f1; ans(neq-1) = ans(neq-1)+f2
call chobac(pb,ans) ; loads=ans
if(j/npri*npri==j)write(11,'(2e12.4)') &
time,loads(nf(:,nn))*exp(ux/2./permx)*exp(uy/2./permy)
end do timesteps
end program p82
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -