📄 p115.f90
字号:
program p115
!-----------------------------------------------------------------------
! program 11.5 forced vibration of an elastic-plastic(Von Mises) solid
! using 8-node quadrilateral elements; viscoplastic strain method
! rectangular mesh : lumped mass , explicit integration
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,nxe,neq,nn,nr,nip,nodof=2,nod=8,nst=4,ndof,loaded_nodes, &
i,k,iel,ndim=2,jj,nstep ,npri
real ::aa,bb,rho,dtim,time,e,v,det,sbary,pload,sigm,f,fnew,fac, &
area,sbar,dsbar,lode_theta
character (len = 15) :: element = 'quadrilateral'
!---------------------------- dynamic arrays-----------------------------------
real ,allocatable :: points(:,:),bdylds(:),x1(:),d1x1(:),stress(:), &
pl(:,:),emm(:),d2x1(:),tensor(:,:,:),etensor(:,:,:),&
val(:,:),mm(:),dee(:,:),coord(:,:),jac(:,:), &
weights(:), der(:,:),deriv(:,:),bee(:,:),eld(:), &
eps(:),sigma(:),bload(:),eload(:),g_coord(:,:)
integer, allocatable :: nf(:,:) , g(:), no(:) ,num(:), g_num(:,:) ,g_g(:,:)
!-----------------------input and initialisation-------------------------------
open (10,file='p115.dat',status= 'old',action='read')
open (11,file='p115.res',status='replace',action='write')
read (10,*) aa,bb,sbary,e,v,rho,pload, &
nels,nxe,nn,nip,loaded_nodes,dtim,nstep,npri
ndof=nod*nodof
allocate (nf(nodof,nn), points(nip,ndim),weights(nip),g_coord(ndim,nn), &
num(nod),dee(nst,nst),tensor(nst,nip,nels),no(loaded_nodes), &
coord(nod,ndim), pl(nst,nst), etensor(nst,nip,nels), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels), &
bee(nst,ndof),eld(ndof),eps(nst),sigma(nst),emm(ndof), &
bload(ndof),eload(ndof),g(ndof), stress(nst), &
val(loaded_nodes,ndim),g_g(ndof,nels))
nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf)
read(10,*)(no(i),val(i,:),i=1,loaded_nodes)
! loop the elements to set up global arrays
elements_1: do iel = 1 , nels
call geometry_8qx(iel,nxe,aa,bb,coord,num)
call num_to_g (num , nf , g); g_num(:,iel)=num
g_coord(:,num)=transpose(coord); g_g( : , iel ) = g
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,2e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k = 1 , nels; write(11,'(a,i5,a,8i5)') &
"Element ",k," ",g_num(:,k); end do
write(11,'(a,i5,a)') "There are ",neq," equations to be solved"
allocate(bdylds(0:neq),x1(0:neq),d1x1(0:neq),d2x1(0:neq),mm(0:neq))
tensor = .0; etensor = .0
x1=0.0; d1x1=0.0; d2x1=0.0; mm=0.0 ; call sample(element,points,weights)
!--------------------- explicit integration loop -----------------------------
write(11,'(a)') " Time Displacement Velocity Acceleration"
time = .0
write(11,'(4e12.4)')time,x1(neq),d1x1(neq),d2x1(neq)
time_steps : do jj = 1 , nstep
!------------------------- apply the load ------------------------------------
time = time + dtim
x1 = x1 +(d1x1+d2x1*dtim*.5)*dtim ; bdylds = .0
!-------------------- element stress-strain relationship ----------------------
elements_2: do iel = 1 , nels
num = g_num(:,iel) ; coord = transpose(g_coord(: , num ))
g = g_g( : , iel ) ; area = 0.0 ; bload = .0 ; eld = x1 ( g )
gauss_pts_1: do i =1 , nip ; dee = .0 ; call deemat(dee,e,v)
call shape_der (der,points,i); jac = matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv)
area = area + det * weights(i)*rho; eps = matmul ( bee , eld )
eps = eps - etensor( : , i , iel )
sigma= matmul ( dee , eps ); stress = sigma+tensor (: , i, iel)
call invar(stress,sigm,dsbar,lode_theta); fnew = dsbar - sbary
!---------------------- check whether yield is violated -----------------------
if(fnew>=.0) then
stress= tensor(:,i,iel); call invar(stress,sigm,sbar,lode_theta)
f = sbar - sbary; fac = fnew/(fnew - f)
stress = tensor ( : , i , iel )+(1.-fac) * sigma
call vmpl(e,v,stress,pl); dee = dee - fac * pl
end if
sigma = matmul(dee ,eps) ;sigma = sigma + tensor( : , i , iel )
eload=matmul(sigma,bee); bload= bload+ eload * det * weights(i)
!-----------------------update Gauss point stresses and strains ---------------
tensor( : , i , iel) = sigma
etensor( : , i , iel ) = etensor( : , i , iel ) + eps
end do gauss_pts_1
bdylds ( g ) = bdylds ( g ) - bload ; bdylds(0) = .0
if( jj == 1) then
emm = .2 * area; emm(1:13:4)=.05*area; emm(2:14:4)=.05*area
mm ( g ) = mm ( g ) + emm
end if
end do elements_2
do i=1,loaded_nodes
bdylds(nf(:,no(i)))=bdylds(nf(:,no(i)))+val(i,:)*pload
end do
bdylds(1:neq) = bdylds(1:neq) / mm(1:neq)
d1x1=d1x1+(d2x1+bdylds)*.5*dtim ; d2x1 = bdylds
if(jj==jj/npri*npri)write(11,'(4e12.4)')time,x1(neq),d1x1(neq),d2x1(neq)
end do time_steps
end program p115
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -