📄 p65.f90
字号:
program p65
!-----------------------------------------------------------------------
! program 6.5 plane strain of an elastic-plastic(Von Mises)
! solid using 8-node quadrilateral elements; initial stress method
! consistent return algorithm for problem of p60 ; pcg version
!------------------------------------------------------------------------
use new_library ; use geometry_lib ; implicit none
integer::nels,nxe,nye,neq,nn,nr,nip,nodof=2,nod=8,nst=4,ndof,loaded_nodes, &
i,k,iel,plasiters,plasits,cjiters,cjits,incs,iy,ndim=2,cjtot
logical::plastic_converged,cj_converged
character(len=15)::element='quadrilateral'
real::e,v,det,cu,ptot,fnew,ff,fstiff,dlam,dslam,dsbar,lode_theta,sigm,top, &
bot,tload,tloads,residual,up,alpha,beta,big,plastol,cjtol,fftol,ltol
!------------------------------- dynamic arrays--------------------------------
real ,allocatable :: loads(:),points(:,:),totd(:),bdylds(:), &
width(:),depth(:),tensor(:,:,:),pmul(:),utemp(:), &
dee(:,:),coord(:,:),fun(:),jac(:,:),weights(:), &
der(:,:),deriv(:,:),bee(:,:),km(:,:),eld(:),eps(:), &
sigma(:),bload(:),eload(:),elso(:),g_coord(:,:), &
oldis(:),val(:,:),stress(:),qinc(:),ddylds(:), &
dl(:,:),dload(:),vmfl(:),caflow(:),dsigma(:), &
ress(:),rmat(:,:),acat(:,:),acatc(:,:),qmat(:,:), &
qinva(:),daatd(:,:),temp(:,:),vmflq(:),storkm(:,:,:),&
vmfla(:),qinvr(:),vmtemp(:,:), &
p(:),x(:),xnew(:),u(:),diag_precon(:),d(:)
integer, allocatable :: nf(:,:) , g(:), no(:) ,num(:), g_num(:,:) ,g_g(:,:)
!------------------------input and initialisation------------------------------
open (10,file='p65.dat',status= 'old',action='read')
open (11,file='p65.res',status='replace',action='write')
read (10,*) cu,e,v, nels,nxe,nye,nn,nip, &
plasits,cjits,plastol,cjtol,fftol,ltol
ndof=nod*nodof
allocate (nf(nodof,nn), points(nip,ndim),weights(nip),g_coord(ndim,nn), &
width(nxe+1),depth(nye+1),num(nod),dee(nst,nst),pmul(ndof), &
tensor(nst,nip,nels),g_g(ndof,nels),storkm(ndof,ndof,nels), &
coord(nod,ndim),stress(nst),temp(nst,nst),dl(nip,nels), &
jac(ndim,ndim),der(ndim,nod),deriv(ndim,nod),g_num(nod,nels), &
bee(nst,ndof),km(ndof,ndof),eld(ndof),eps(nst),sigma(nst), &
bload(ndof),eload(ndof),elso(nst),g(ndof),vmfl(nst),qinvr(nst), &
dload(ndof),caflow(nst),dsigma(nst),ress(nst),rmat(nst,nst), &
acat(nst,nst),acatc(nst,nst),qmat(nst,nst),qinva(nst), &
daatd(nst,nst),vmflq(nst),vmfla(nst),vmtemp(1,nst),utemp(ndof))
nf=1; read(10,*) nr ; if(nr>0) read(10,*)(k,nf(:,k),i=1,nr)
call formnf(nf); neq=maxval(nf) ; read(10,*) width, depth
temp = .0; temp(1,1)=1.;temp(2,2)=1.;temp(3,3)=3.;temp(4,4)=1.
temp(1,2)=-.5;temp(2,1)=-.5;temp(1,4)=-.5
temp(2,4)=-.5;temp(4,1)=-.5;temp(4,2)=-.5
!---------------- loop the elements to set up global arrays -------------------
elements_1: do iel = 1 , nels
call geometry_8qyv(iel,nye,width,depth,coord,num)
call num_to_g(num,nf,g); g_num(:,iel)=num
g_coord(:,num)=transpose(coord); g_g( : , iel ) = g
end do elements_1
write(11,'(a)') "Global coordinates "
do k=1,nn;write(11,'(a,i5,a,2e12.4)')"Node",k," ",g_coord(:,k);end do
write(11,'(a)') "Global node numbers "
do k = 1 , nels; write(11,'(a,i5,a,8i5)') &
"Element ",k," ",g_num(:,k); end do
allocate(loads(0:neq),bdylds(0:neq),oldis(0:neq),totd(0:neq),ddylds(0:neq), &
p(0:neq),x(0:neq),xnew(0:neq),u(0:neq),diag_precon(0:neq),d(0:neq))
oldis=0.0; totd=0.0 ; p = .0; xnew = .0; diag_precon = .0
call deemat(dee,e,v); call sample(element,points,weights); tensor= .0; dl=.0
!---------- starting element stiffness integration,storage,preconditioner------
elements_2: do iel = 1 , nels
num = g_num(: , iel ) ; coord = transpose(g_coord(: , num ))
g = g_g( : , iel ) ; km=0.0
gauss_pts_1: do i =1 , nip
call shape_der (der,points,i); jac = matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv)
km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)
end do gauss_pts_1
storkm(:,:,iel) = km
do k=1,ndof; diag_precon(g(k))=diag_precon(g(k)) + km(k,k); end do
end do elements_2
diag_precon(1:neq) = 1./diag_precon(1:neq) ; diag_precon(0) = .0
!---------------read load weightings -----------------------------------------
read(10,*) loaded_nodes ; allocate (no(loaded_nodes),val(loaded_nodes,ndim))
read(10,*)(no(i),val(i,:),i=1,loaded_nodes)
!----------------- load increment loop----------------------------------------
read(10,*) incs ; allocate(qinc(incs)); read(10,*)qinc ; ptot = .0
load_increments: do iy=1,incs
write(11,'(/,a,i5)') ' Load increment ',iy
ptot=ptot + qinc(iy) ; plasiters = 0;bdylds=.0 ;loads=.0; cjtot=0
do i=1,loaded_nodes ; loads(nf(:,no(i)))=val(i,:)*qinc(iy) ; end do
!---------------------- plastic iteration loop -----------------------------
plastic_iterations: do
plasiters=plasiters+1; if(plasiters/=1)loads=.0 ;loads = loads + bdylds
if(abs(sum(loads))<1.e-5) then; plasiters=plasiters-1;exit ; end if
write(11,'(a,i5)') "Plastic iteration number",plasiters
bdylds = .0 ; ddylds = .0 ; d=diag_precon*loads ; p = d ; x = .0
!--------------- solve the simultaneous equations by pcg -------------------
cjiters = 0
conjugate_gradients: do
cjiters = cjiters + 1 ; u = .0
elements_3 : do iel = 1 , nels
g = g_g( : , iel ); km = storkm( : , : ,iel)
pmul = p(g); utemp=matmul(km,pmul)
!dir$ ivdep
do i = 1 , ndof
u(g(i)) = u(g(i)) + utemp(i)
end do
end do elements_3
!----------------------------pcg process --------------------------------------
up =dot_product(loads,d); alpha=up/dot_product(p,u)
xnew = x + p* alpha; loads = loads - u*alpha; d = diag_precon*loads
beta = dot_product(loads,d)/up; p = d + p * beta
big = .0; cj_converged = .true.
do i = 1,neq; if(abs(xnew(i))>big)big=abs(xnew(i)); end do
do i = 1,neq; if(abs(xnew(i)-x(i))/big>cjtol)cj_converged=.false.;end do
x = xnew
if(cj_converged.or.cjiters==cjits) exit
end do conjugate_gradients
cjtot = cjtot + cjiters
!------------------------- end of pcg process ---------------------------------
loads = xnew ; loads(0) = .0 ; diag_precon = .0
!----------------------- go round the elements---------------------------------
elements_4: do iel = 1 , nels
bload=.0 ; dload = .0
num = g_num( : , iel ) ; coord = transpose(g_coord( : , num ))
g = g_g( : , iel ) ; km = .0; eld = loads(g)
!------------------------ go round the Gauss points ---------------------------
gauss_points_2 : do i = 1 , nip
elso = .0 ; call shape_der ( der,points,i); jac=matmul(der,coord)
det = determinant(jac) ; call invert(jac)
deriv = matmul(jac,der) ; call beemat (bee,deriv)
eps = matmul(bee,eld) ; call deemat(dee,e,v)
stress = tensor(: , i , iel)
call invar(stress,sigm,dsbar,lode_theta) ; ff = dsbar-sqrt(3.)*cu
if(ff>fftol) then
dlam = dl(i,iel) ; call vmflow(stress,dsbar,vmfl)
call fmrmat(vmfl,dsbar,dlam,dee,temp,rmat)
caflow = matmul(rmat,vmfl); bot=dot_product(vmfl,caflow)
call formaa(vmfl,rmat,daatd); dee = rmat - daatd/bot
end if
sigma = matmul(dee,eps)
stress = sigma + tensor( : , i , iel)
call invar(stress,sigm,dsbar,lode_theta)
!--------------------- check whether yield is violated ----------------------
fnew = dsbar - sqrt(3.)*cu ; fstiff = fnew
if (fnew>=.0) then
call deemat(dee,e,v) ; call vmflow(stress,dsbar,vmfl)
caflow = matmul(dee,vmfl); bot=dot_product(vmfl,caflow)
dlam = fnew/bot; elso = caflow*dlam
stress = tensor( : , i , iel) + sigma - elso
call invar(stress,sigm,dsbar,lode_theta);fnew=dsbar-sqrt(3.)*cu
iterate_on_fnew : do
call vmflow(stress,dsbar,vmfl); caflow = matmul(dee,vmfl)*dlam
ress = stress - (tensor(: , i , iel) +sigma - caflow)
call fmacat(vmfl,temp,acat); acat = acat / dsbar
acatc = matmul(dee,acat); qmat = acatc*dlam
do k=1,4; qmat(k,k)=qmat(k,k)+1.; end do; call invert(qmat)
vmtemp(1,:)=vmfl; vmtemp = matmul(vmtemp,qmat);vmflq=vmtemp(1,:)
top = dot_product(vmflq,ress)
vmtemp = matmul(vmtemp,dee);vmfla=vmtemp(1,:)
bot = dot_product(vmfla,vmfl) ; dslam = (fnew - top)/bot
qinvr = matmul(qmat,ress); qinva=matmul(matmul(qmat,dee),vmfl)
dsigma = -qinvr - qinva*dslam; stress = stress + dsigma
call invar(stress,sigm,dsbar,lode_theta)
fnew = dsbar - sqrt(3.)*cu; dlam = dlam + dslam
if (fnew<plastol) exit
end do iterate_on_fnew
dl(i,iel) = dlam
elso = tensor( : , i , iel) + sigma - stress
eload=matmul(elso,bee);bload=bload+eload*det*weights(i)
call vmflow(stress,dsbar,vmfl)
call fmrmat(vmfl,dsbar,dlam,dee,temp,rmat)
caflow=matmul(rmat,vmfl);bot = dot_product(vmfl,caflow)
call formaa(vmfl,rmat,daatd)
dee = rmat - daatd/bot
end if
if(fstiff<.0) call deemat(dee,e,v)
km = km + matmul(matmul(transpose(bee),dee),bee) *det* weights(i)
!--------------------- update the Gauss Point stresses -----------------------
tensor( : , i , iel) = tensor( : , i , iel) + sigma - elso
stress = tensor ( : , i , iel)
eload=matmul(stress,bee); dload=dload+eload*det*weights(i)
end do gauss_points_2
! compute the total bodyloads vector
bdylds( g ) = bdylds( g ) + bload ; bdylds(0) = .0
ddylds( g ) = ddylds( g ) + dload ; ddylds(0) = .0
storkm(:,:,iel) = km
do k =1,ndof; diag_precon(g(k))=diag_precon(g(k))+km(k,k); end do
end do elements_4
diag_precon(1:neq)=1./diag_precon(1:neq) ; diag_precon(0) = .0
tload = sum(ddylds) ; tloads = sum(bdylds)
if(plasiters==1)plastic_converged=.false.
if(plasiters/=1.and.tloads<ltol)plastic_converged=.true.
residual = (2.*ptot+tload-tloads)/(2.*ptot)
write(11,'(a,10e12.4)')"tloads,tload,residual are",tloads,tload,residual
totd = totd + loads
if(plastic_converged.or.plasiters==plasits)exit
end do plastic_iterations
totd=totd+loads
write(11,'(a,e12.4)')"The total load is ",ptot
write(11,'(a,10e12.4)')"Displacements are",totd(nf(2,no))
write(11,'(a,i12)')"The number of cj iterations was ",cjtot
write(11,'(a,i12)')"The number of plastic iterations was ",plasiters
write(11,'(a,f11.2)')"cj iterations per plastic iteration were ", &
& real(cjtot)/real(plasiters)
if(plasiters==plasits)stop
end do load_increments
end program p65
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -