📄 gmnplib.c
字号:
/*-----------------------------------------------------------------------
gmnplib.c: Library of solvers for Generalized Minimal Norm Problem (GMNP).
Generalized Minimal Norm Problem to solve is
min 0.5*alpha'*H*alpha + c'*alpha
subject to sum(alpha) = 1, alpha(i) >= 0
H [dim x dim] is symmetric positive definite matrix.
c [dim x 1] is an arbitrary vector.
The precision of the found solution is given by
the parameters tmax, tolabs and tolrel which
define the stopping conditions:
UB-LB <= tolabs -> exit_flag = 1 Abs. tolerance.
UB-LB <= UB*tolrel -> exit_flag = 2 Relative tolerance.
LB > th -> exit_flag = 3 Threshold on lower bound.
t >= tmax -> exit_flag = 0 Number of iterations.
UB ... Upper bound on the optimal solution.
LB ... Lower bound on the optimal solution.
t ... Number of iterations.
History ... Value of LB and UB wrt. number of iterations.
The following algorithms are implemented:
..............................................
- GMNP solver based on MDM algorithm.
exitflag = gmnp_mdm( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History, verb );
- GMNP solver based on improved MDM algorithm 1 (u fixed v optimized)
exitflag = gmnp_imdm( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History, verb );
- GMNP solver based on improved MDM algorithm 2 (u fixed v optimized
and vice versa)
exitflag = gmnp_iimdm( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History, verb );
- GMNP solver based on the Kowalczyk's algorithm.
exitflag = gmnp_kowalczyk( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History, verb );
- GMNP solver based on the Keerthis's algorithm.
exitflag = gmnp_keerthi( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History, verb );
- GMNP solver based on the Kozinec (alis Gilbert's) algorithm.
exitflag = gmnp_kozinec( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History, verb );
For more info refer to V.Franc: Optimization Algorithms for Kernel
Methods. Research report. CTU-CMP-2005-22. CTU FEL Prague. 2005.
ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-PhD.pdf .
Modifications:
09-sep-2005, VF
24-jan-2005, VF
26-nov-2004, VF
25-nov-2004, VF
21-nov-2004, VF
20-nov-2004, VF
31-may-2004, VF
23-Jan-2004, VF
-------------------------------------------------------------------- */
#include "mex.h"
#include "matrix.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#define HISTORY_BUF 1000000
#define MINUS_INF INT_MIN
#define PLUS_INF INT_MAX
#define ABS(A) ((A >= 0) ? A : -A)
#define MIN(A,B) ((A < B) ? A : B)
#define INDEX(ROW,COL,DIM) ((COL*DIM)+ROW)
/* --------------------------------------------------------------
GMNP solver based on MDM algorithm.
Usage: exitflag = gmnp_mdm( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History );
-------------------------------------------------------------- */
int gmnp_mdm(const void* (*get_col)(long,long),
double *diag_H,
double *vector_c,
long dim,
long tmax,
double tolabs,
double tolrel,
double th,
double *alpha,
long *ptr_t,
double **ptr_History,
long verb)
{
double LB;
double UB;
double aHa, ac;
double tmp, tmp1;
double Huu, Huv, Hvv;
double min_beta, max_beta, beta;
double lambda;
double *History;
double *Ha;
double *tmp_ptr;
double *col_u, *col_v;
long u;
long v;
long new_u;
long new_v;
long i;
long t;
long History_size;
int exitflag;
/* ------------------------------------------------------------ */
/* Initialization */
/* ------------------------------------------------------------ */
Ha = mxCalloc(dim, sizeof(double));
if( Ha == NULL ) mexErrMsgTxt("Not enough memory.");
History_size = (tmax < HISTORY_BUF ) ? tmax+1 : HISTORY_BUF;
History = mxCalloc(History_size*2,sizeof(double));
if( History == NULL ) mexErrMsgTxt("Not enough memory.");
/* inx = argmin(0.5*diag_H + vector_c ); */
for( tmp1 = PLUS_INF, i = 0; i < dim; i++ ) {
tmp = 0.5*diag_H[i] + vector_c[i];
if( tmp1 > tmp) {
tmp1 = tmp;
v = i;
}
}
col_v = (double*)get_col(v,-1);
for( min_beta = PLUS_INF, i = 0; i < dim; i++ )
{
alpha[i] = 0;
Ha[i] = col_v[i];
beta = Ha[i] + vector_c[i];
if( beta < min_beta ) {
min_beta = beta;
u = i;
}
}
alpha[v] = 1;
aHa = diag_H[v];
ac = vector_c[v];
UB = 0.5*aHa + ac;
LB = min_beta - 0.5*aHa;
t = 0;
History[INDEX(0,0,2)] = LB;
History[INDEX(1,0,2)] = UB;
if( verb ) {
mexPrintf("Init: UB=%f, LB=%f, UB-LB=%f, (UB-LB)/|UB|=%f \n",
UB, LB, UB-LB,(UB-LB)/UB);
}
/* Stopping conditions */
if( UB-LB <= tolabs ) exitflag = 1;
else if(UB-LB <= ABS(UB)*tolrel ) exitflag = 2;
else if(LB > th ) exitflag = 3;
else exitflag = -1;
/* ------------------------------------------------------------ */
/* Main optimization loop */
/* ------------------------------------------------------------ */
while( exitflag == -1 )
{
t++;
col_u = (double*)get_col(u,-1);
col_v = (double*)get_col(v,u);
/* Adaptation rule and update */
Huu = diag_H[u];
Hvv = diag_H[v];
Huv = col_u[v];
lambda = (Ha[v]-Ha[u]+vector_c[v]-vector_c[u])/(alpha[v]*(Huu-2*Huv+Hvv));
if( lambda < 0 ) lambda = 0; else if (lambda > 1) lambda = 1;
aHa = aHa + 2*alpha[v]*lambda*(Ha[u]-Ha[v])+
lambda*lambda*alpha[v]*alpha[v]*(Huu-2*Huv+Hvv);
ac = ac + lambda*alpha[v]*(vector_c[u]-vector_c[v]);
tmp = alpha[v];
alpha[u]=alpha[u]+lambda*alpha[v];
alpha[v]=alpha[v]-lambda*alpha[v];
UB = 0.5*aHa + ac;
min_beta = PLUS_INF;
max_beta = MINUS_INF;
for( i = 0; i < dim; i++ )
{
Ha[i] = Ha[i] + lambda*tmp*(col_u[i] - col_v[i]);
beta = Ha[i]+ vector_c[i];
if( alpha[i] !=0 && max_beta < beta )
{
new_v = i;
max_beta = beta;
}
if( beta < min_beta )
{
new_u = i;
min_beta = beta;
}
}
LB = min_beta - 0.5*aHa;
u = new_u;
v = new_v;
/* Stopping conditions */
if( UB-LB <= tolabs ) exitflag = 1;
else if( UB-LB <= ABS(UB)*tolrel ) exitflag = 2;
else if(LB > th ) exitflag = 3;
else if(t >= tmax) exitflag = 0;
if( verb && (t % verb) == 0) {
mexPrintf("%d: UB=%f, LB=%f, UB-LB=%f, (UB-LB)/|UB|=%f \n",
t, UB, LB, UB-LB,(UB-LB)/UB);
}
/* Store selected values */
if( t < History_size ) {
History[INDEX(0,t,2)] = LB;
History[INDEX(1,t,2)] = UB;
}
else {
tmp_ptr = mxCalloc((History_size+HISTORY_BUF)*2,sizeof(double));
if( tmp_ptr == NULL ) mexErrMsgTxt("Not enough memory.");
for( i = 0; i < History_size; i++ ) {
tmp_ptr[INDEX(0,i,2)] = History[INDEX(0,i,2)];
tmp_ptr[INDEX(1,i,2)] = History[INDEX(1,i,2)];
}
tmp_ptr[INDEX(0,t,2)] = LB;
tmp_ptr[INDEX(1,t,2)] = UB;
History_size += HISTORY_BUF;
mxFree( History );
History = tmp_ptr;
}
}
/* print info about last iteration*/
if(verb && (t % verb) ) {
mexPrintf("exit: UB=%f, LB=%f, UB-LB=%f, (UB-LB)/|UB|=%f \n",
UB, LB, UB-LB,(UB-LB)/UB);
}
/*------------------------------------------------------- */
/* Set outputs */
/*------------------------------------------------------- */
(*ptr_t) = t;
(*ptr_History) = History;
/* Free memory */
mxFree( Ha );
return( exitflag );
}
/* --------------------------------------------------------------
GMNP solver based on improved MDM algorithm 1.
Search strategy: u determined by common rule and v is
optimized.
Usage: exitflag = gmnp_imdm( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History );
-------------------------------------------------------------- */
int gmnp_imdm(const void* (*get_col)(long,long),
double *diag_H,
double *vector_c,
long dim,
long tmax,
double tolabs,
double tolrel,
double th,
double *alpha,
long *ptr_t,
double **ptr_History,
long verb)
{
double LB;
double UB;
double aHa, ac;
double tmp, tmp1;
double Huu, Huv, Hvv;
double min_beta, max_beta, beta;
double max_improv, improv;
double lambda;
double *History;
double *Ha;
double *tmp_ptr;
double *col_u, *col_v;
long u;
long v;
long new_u;
long new_v;
long i;
long t;
long History_size;
int exitflag;
/* ------------------------------------------------------------ */
/* Initialization */
/* ------------------------------------------------------------ */
Ha = mxCalloc(dim, sizeof(double));
if( Ha == NULL ) mexErrMsgTxt("Not enough memory.");
History_size = (tmax < HISTORY_BUF ) ? tmax+1 : HISTORY_BUF;
History = mxCalloc(History_size*2,sizeof(double));
if( History == NULL ) mexErrMsgTxt("Not enough memory.");
/* inx = argmin(0.5*diag_H + vector_c ); */
for( tmp1 = PLUS_INF, i = 0; i < dim; i++ ) {
tmp = 0.5*diag_H[i] + vector_c[i];
if( tmp1 > tmp) {
tmp1 = tmp;
v = i;
}
}
col_v = (double*)get_col(v,-1);
for( min_beta = PLUS_INF, i = 0; i < dim; i++ )
{
alpha[i] = 0;
Ha[i] = col_v[i];
beta = Ha[i] + vector_c[i];
if( beta < min_beta ) {
min_beta = beta;
u = i;
}
}
alpha[v] = 1;
aHa = diag_H[v];
ac = vector_c[v];
UB = 0.5*aHa + ac;
LB = min_beta - 0.5*aHa;
t = 0;
History[INDEX(0,0,2)] = LB;
History[INDEX(1,0,2)] = UB;
if( verb ) {
mexPrintf("Init: UB=%f, LB=%f, UB-LB=%f, (UB-LB)/|UB|=%f \n",
UB, LB, UB-LB,(UB-LB)/UB);
}
/* Stopping conditions */
if( UB-LB <= tolabs ) exitflag = 1;
else if(UB-LB <= ABS(UB)*tolrel ) exitflag = 2;
else if(LB > th ) exitflag = 3;
else exitflag = -1;
/* ------------------------------------------------------------ */
/* Main optimization loop */
/* ------------------------------------------------------------ */
col_u = (double*)get_col(u,-1);
while( exitflag == -1 )
{
t++;
col_v = (double*)get_col(v,u);
/* Adaptation rule and update */
Huu = diag_H[u];
Hvv = diag_H[v];
Huv = col_u[v];
lambda = (Ha[v]-Ha[u]+vector_c[v]-vector_c[u])/(alpha[v]*(Huu-2*Huv+Hvv));
if( lambda < 0 ) lambda = 0; else if (lambda > 1) lambda = 1;
aHa = aHa + 2*alpha[v]*lambda*(Ha[u]-Ha[v])+
lambda*lambda*alpha[v]*alpha[v]*(Huu-2*Huv+Hvv);
ac = ac + lambda*alpha[v]*(vector_c[u]-vector_c[v]);
tmp = alpha[v];
alpha[u]=alpha[u]+lambda*alpha[v];
alpha[v]=alpha[v]-lambda*alpha[v];
UB = 0.5*aHa + ac;
/* max_beta = MINUS_INF;*/
for( min_beta = PLUS_INF, i = 0; i < dim; i++ )
{
Ha[i] = Ha[i] + lambda*tmp*(col_u[i] - col_v[i]);
beta = Ha[i]+ vector_c[i];
if( beta < min_beta )
{
new_u = i;
min_beta = beta;
}
}
LB = min_beta - 0.5*aHa;
u = new_u;
col_u = (double*)get_col(u,-1);
/* search for optimal v while u is fixed */
for( max_improv = MINUS_INF, i = 0; i < dim; i++ ) {
if( alpha[i] != 0 ) {
beta = Ha[i] + vector_c[i];
if( beta >= min_beta ) {
tmp = diag_H[u] - 2*col_u[i] + diag_H[i];
if( tmp != 0 ) {
improv = (0.5*(beta-min_beta)*(beta-min_beta))/tmp;
if( improv > max_improv ) {
max_improv = improv;
v = i;
}
}
}
}
}
/* Stopping conditions */
if( UB-LB <= tolabs ) exitflag = 1;
else if( UB-LB <= ABS(UB)*tolrel ) exitflag = 2;
else if(LB > th ) exitflag = 3;
else if(t >= tmax) exitflag = 0;
/* print info */
if(verb && (t % verb) == 0 ) {
mexPrintf("%d: UB=%f, LB=%f, UB-LB=%f, (UB-LB)/|UB|=%f \n",
t, UB, LB, UB-LB,(UB-LB)/UB);
}
/* Store selected values */
if( t < History_size ) {
History[INDEX(0,t,2)] = LB;
History[INDEX(1,t,2)] = UB;
}
else {
tmp_ptr = mxCalloc((History_size+HISTORY_BUF)*2,sizeof(double));
if( tmp_ptr == NULL ) mexErrMsgTxt("Not enough memory.");
for( i = 0; i < History_size; i++ ) {
tmp_ptr[INDEX(0,i,2)] = History[INDEX(0,i,2)];
tmp_ptr[INDEX(1,i,2)] = History[INDEX(1,i,2)];
}
tmp_ptr[INDEX(0,t,2)] = LB;
tmp_ptr[INDEX(1,t,2)] = UB;
History_size += HISTORY_BUF;
mxFree( History );
History = tmp_ptr;
}
}
/* print info about last iteration*/
if(verb && (t % verb) ) {
mexPrintf("exit: UB=%f, LB=%f, UB-LB=%f, (UB-LB)/|UB|=%f \n",
UB, LB, UB-LB,(UB-LB)/UB);
}
/*------------------------------------------------------- */
/* Set outputs */
/*------------------------------------------------------- */
(*ptr_t) = t;
(*ptr_History) = History;
/* Free memory */
mxFree( Ha );
return( exitflag );
}
/* --------------------------------------------------------------
GMNP solver based on improved MDM algorithm 2.
Search strategy: u fix and v optimzed plus v fixed and u
optimized.
Usage: exitflag = gmnp_iimdm( &get_col, diag_H, vector_c, dim,
tmax, tolabs, tolrel, th, &alpha, &t, &History );
-------------------------------------------------------------- */
int gmnp_iimdm(const void* (*get_col)(long,long),
double *diag_H,
double *vector_c,
long dim,
long tmax,
double tolabs,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -