📄 pdfgmm.m
字号:
function y = pdfgmm(X, model )% PDFGMM Evaluates gaussian mixture model.%% Synopsis:% y = pdfgmm(X, model )%% Description:% This function evaluates a probability density function % determined by Gaussian mixture model (GMM) for given input column % vectors in X. The GMM is defined as% % y(i) = sum model.Prior(j)*pdfgauss(X(:,i),model.Mean(:,j),model.Cov(:,:,j))% j=1:ncomp%% for all i=1:size(X,2).% % Input:% X [dim x num_data] Input matrix of column vectors.% model.Mean [dim x ncomp] Means of Gaussians.% model.Cov [dim x dim x ncomp] Covarince matrices.% model.Prior [ncomp x 1] Weights of components.%% Output:% y [1 x num_data] Values of probability density function.%% Example:%% Univariate case% x = linspace(-5,5,100);% distrib = struct('Mean',[-2 3],'Cov',[1 0.5],'Prior',[0.4 0.6]);% y = pdfgmm(x,distrib);% figure; plot(x,y);%% Multivariate case% model.Mean(:,1) = [-1;-1]; model.Cov(:,:,1) = [1,0.5;0.5,1]; % model.Mean(:,2) = [1;1]; model.Cov(:,:,2) = [1,-0.5;-0.5,1]; % model.Prior = [0.4 0.6];% [Ax,Ay] = meshgrid(linspace(-5,5,100), linspace(-5,5,100));% y = pdfgmm([Ax(:)';Ay(:)'],model);% figure; surf( Ax, Ay, reshape(y,100,100)); shading interp;%% See also % GMMSAMP, PDFGAUSS.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 28-apr-2004, VF% allows inputs to be given in cell arraymodel = c2s(model);y = model.Prior(:)'*pdfgauss(X,model);return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -