⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pdfgmm.m

📁 很好的matlab模式识别工具箱
💻 M
字号:
function y = pdfgmm(X, model )% PDFGMM Evaluates gaussian mixture model.%% Synopsis:%  y = pdfgmm(X, model )%% Description:%  This function evaluates a probability density function %  determined by Gaussian mixture model (GMM) for given input column %  vectors in X. The GMM is defined as%         %  y(i) = sum model.Prior(j)*pdfgauss(X(:,i),model.Mean(:,j),model.Cov(:,:,j))%       j=1:ncomp%%  for all i=1:size(X,2).% % Input:%  X [dim x num_data] Input matrix of column vectors.%  model.Mean [dim x ncomp] Means of Gaussians.%  model.Cov [dim x dim x ncomp] Covarince matrices.%  model.Prior [ncomp x 1] Weights of components.%% Output:%  y [1 x num_data] Values of probability density function.%% Example:%% Univariate case%  x = linspace(-5,5,100);%  distrib = struct('Mean',[-2 3],'Cov',[1 0.5],'Prior',[0.4 0.6]);%  y = pdfgmm(x,distrib);%  figure; plot(x,y);%% Multivariate case%  model.Mean(:,1) = [-1;-1]; model.Cov(:,:,1) = [1,0.5;0.5,1]; %  model.Mean(:,2) = [1;1]; model.Cov(:,:,2) = [1,-0.5;-0.5,1]; %  model.Prior = [0.4 0.6];%  [Ax,Ay] = meshgrid(linspace(-5,5,100), linspace(-5,5,100));%  y = pdfgmm([Ax(:)';Ay(:)'],model);%  figure; surf( Ax, Ay, reshape(y,100,100)); shading interp;%% See also %  GMMSAMP, PDFGAUSS.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 28-apr-2004, VF% allows inputs to be given in cell arraymodel = c2s(model);y = model.Prior(:)'*pdfgauss(X,model);return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -