📄 gsamp.m
字号:
function X=gsamp(varargin)% GSAMP Generates sample from Gaussian distribution.% % Synopsis:% X = gsamp( Mean, Cov, num_data )% X = gsamp( model, num_data )%% Description:% X = gsamp(Mean,Cov,num_data) generates num_data samples from % a multi-variate Gassian distribution given by mean vector % Mean [dim x 1] and covariance matrix Cov [dim x dim]. %% X = gsamp(model,num_data) assumes that parameters of Gaussian% are given in structure with fields model.Mean a model.Cov.% % Example:% model = struct('Mean',1,'Cov',2);% figure; hold on;% plot([-4:0.1:5],pdfgauss([-4:0.1:5],model),'r');% [Y,X] = hist(gsamp(model,500),10);% bar(X,Y/500);%% See also % PDFGAUSS, GMMSAMP.% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 28-apr-2004, VF, adopted from P.Krizek if nargin > 2, Mean = varargin{1}; Cov = varargin{2}; num_data = varargin{3};else Mean = varargin{1}.Mean; Cov = varargin{1}.Cov; num_data = varargin{2};end% get dimensiondim = length(Mean);% compute eigen values and vectors[U,L] = eig(Cov);% dewhitening transformX = inv(U')*sqrt(L)*randn(dim,num_data)+repmat(Mean,1,num_data);return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -