📄 pcarec.m
字号:
function Y = pcarec(X,model)% PCAREC Computes reconstructed vector after PCA projection.% % Synopsis:% Y = pcarec(X,model)%% Description:% The input vectorts X are projected onto Z using linear % projection trained by the Principal Component Analysis (PCA). % The vectors Y are computed from Z as a reconstruction of % the original vectors X:%% PCA Reconstr% X ---> Z ---> Y%% Input:% X [dim x num_data] Input vectors.% model [struct] Linear projection trained by PCA. %% Output:% Y [dim x num_data] Reconstructed vectors.%% See also % LINPROJ, PCA, KPCAREC.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 25-may-2004, VF% 5-may-2004, VF% 22-apr-2004, VF% 17-mar-2004, VF, created.[dim,num_data] = size(X);Y = model.W*linproj(X,model) + model.mean_X*ones(1,num_data);return; % EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -