📄 gat1dsearch.m
字号:
function t=gat1dsearch(MI,SG,alpha,dalpha,tmax,tdelta)% GAT1DSEARCH 1D search along improving direction in the GAT.%% Synopsis:% t=gat1dsearch(MI,SG,alpha,dalpha,tmax,tdelta)%% Description:% Auxciliary function for the 'ganders' algorithm.% It implements 1D-search based on the cutting interval % algorithm according to the Fibonacci series. %% See also % GANDERS%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 21-may-2004, VF% 17-sep-2003, VF% 24. 6.00 V. Hlavac, comments polished.LO_TH=0;% default settingif nargin < 5, tmax = inf; delta=1e-6;elseif nargin < 6, delta=0;end% get dimension N and the # of distributionsK = size(MI,2);N = size(MI,1);% compute constantsfor j = 1:K, s(j)= alpha'*MI(:,j); ss(j) = dalpha'*MI(:,j); ds(j) = ss(j) - s(j); sga(j) = alpha'*SG(:,:,j)*alpha; sgd(j) = dalpha'*SG(:,:,j)*dalpha; sgad(j) = dalpha'*SG(:,:,j)*alpha;end% first stepF1=1;F2=1;tbeg=0;tend=1;tmid=0.5*(tend+tbeg);fmid=max([LO_TH,min( (s+tmid*ds)./sqrt( (1-tmid)^2*sga + 2*tmid*(1-tmid)*sgad + tmid^2*sgd ) )]);fbeg=max([LO_TH,min( (s+tbeg*ds)./sqrt( (1-tbeg)^2*sga + 2*tbeg*(1-tbeg)*sgad + tbeg^2*sgd ) )]);if sqrt( (1-tend)^2*sga + 2*tend*(1-tend)*sgad + tend^2*sgd ) == 0, fend=0;else fend=max([LO_TH,min( (s+tend*ds)./sqrt( (1-tend)^2*sga + 2*tend*(1-tend)*sgad + tend^2*sgd ) )]);end% start upstop=0;while stop==0 & tmax > 0, tmax=tmax-1; % store fmid oldfmid=fmid; % Fibonacci, F(k)=F(k-1)+F(k-2) F=F2+F1; % find larger interval if (tmid-tbeg) < (tend-tmid), % new bound t=tmid+F1*(tend-tmid)/F; fvalue=max([LO_TH,min( (s+t*ds)./sqrt( (1-t)^2*sga + 2*t*(1-t)*sgad + t^2*sgd ) )]); if fvalue < fmid, tend=t; fend=fvalue; else tbeg=tmid; fbeg=fmid; tmid=t; fmid=fvalue; end else % new bound t=tbeg+F1*(tmid-tbeg)/F; fvalue=max([LO_TH,min( (s+t*ds)./sqrt( (1-t)^2*sga + 2*t*(1-t)*sgad + t^2*sgd ) )]); if fvalue < fmid, tbeg=t; fbeg=fvalue; else tend=tmid; fend=fmid; tmid=t; fmid=fvalue; end end % update Fibonacci F(k-2)=F(k-1) and F(k-1)=F(k); F2=F1; F1=F; % stop condition if tend-tbeg < tdelta, stop=1; endend% get the bigest valuefvalues=[fbeg fmid fend];tvalues=[tbeg tmid tend];[fmax, imax]=max(fvalues);tmaxim=tvalues(imax);% compute new alpha%alpha=alpha*(1-tmaxim)+dalpha*tmaxim;t=tmaxim;return;% debuggingif 1==1, vals=[]; for t=0:0.01:1, fvalue=min( (s+t*ds)./sqrt( (1-t)^2*sga + 2*t*(1-t)*sgad + t^2*sgd ) ); vals=[vals,fvalue]; end figure; hold on; plot(0:0.01:1,vals,'g'); win=axis; line([tmid tmid],[ win(3) win(4)],'Color','k'); line([0 1],[vals(1) vals(1)],'Color','r'); drawnow;endpause;return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -