📄 linclass.m
字号:
function [y,dfce]=linclass( X, model)% LINCLASS Linear classifier.%% Synopsis:% [y,dfce] = linclass( X, model)%% Description:% This function classifies input data X using linear% discriminant function:%% y(i) = argmax W(:,y)'*X(:,i) + b(y)% y%% where parameters W [dim x nfun] and b [1 x nfun] are given % in model and nfun is number of discriminant functions.%% In the binary case (nfun=1) the classification rule is following% y(i) = 1 if W'*X(:,i) + b >= 0% 2 if W'*X(:,i) + b < 0% % where W [dim x 1], b [1x1] are parameters given in model.%% Input:% X [dim x num_data] Data to be classified.%% model [struct] Parameters of linear classifier:% .W [dim x nfun] Linear term.% .b [nfun x 1] Bias.%% Output:% y [1 x num_data] Predicted labels.% dfce [nfun x num_data] Values of discriminat function.%% Examples:% trn = load('riply_trn');% tst = load('riply_tst');% model = fld( trn );% ypred = linclass( tst.X, model );% cerror( ypred, tst.y )% figure; ppatterns( trn ); pline( model );%% See also % PERCEPTRON, MPERCEPTRON, FLD, ANDERSON.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 2-may-2004, VF% allow model to be gievn as a cellmodel = c2s(model);[dim, num_data] = size(X);nfun = size(model.W,2);if nfun == 1, % binary case dfce = model.W'*X + model.b; y = ones(1,num_data); y(find(dfce < 0)) = 2;else % multi-class case dfce = model.W'*X + model.b(:)*ones(1,num_data); [dummy,y] = max( dfce );endreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -