📄 train_lin_denois.m
字号:
% TRAIN_LIN_DENOIS Training of linear PCA model for image denoising. %% Description:% The linear PCA model is trained to describe an input% class of images corrupted by noise. The training data % contains images corrupted by noise and corresponding % ground truth. The output dimension of the linear PCA% is tuned by cross-validation. The objective function % is a sum of squared differences between ground truth % images and reconstructed images. %% See also% PCA, PCAREC, LINPROJ.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 07-jun-2004, VF% 05-may-2004, VF% 17-mar-2004, VF% Setting %-------------------------------------------------------% # folds for cross-validation; % num_folds = 1 means 50/50 - training/testing partnum_folds = 1; % parameters to be evaluated by cross-validation:%New_Dim_Range = [5 10 20 30 40 60 80 100]; % USPSNew_Dim_Range = [1 2]; % noisy_circleinput_data_file = 'noisy_circle';output_data_file = [];%input_data_file = '/home.dokt/xfrancv/data/usps/usps_noisy';%output_data_file = 'USPSModelLinPCA';%-------------------------------------------------------% Loads training and testing dataload(input_data_file,'trn','tst');[Dim,num_data] = size( trn.X );% Data partitioning for cross-validation[itrn,itst]=crossval(num_data,num_folds);% Tuning linear PCA model%-------------------------------------------------------Mse = [];for new_dim = New_Dim_Range, fprintf('\nnew_dim = %d\n', new_dim); cv_mse = 0; for i=1:num_folds, fprintf('\n'); trn_X = trn.gnd_X(:,itrn{i}); val_gnd_X = trn.gnd_X(:,itst{i}); val_corr_X = trn.X(:,itst{i}); fprintf('Computing Linear PCA...'); lin_model = pca(trn_X, new_dim); fprintf('done\n'); fprintf('Projecting validation data...'); val_reconst_X = pcarec( val_corr_X, lin_model ); fprintf('done.\n'); dummy = (val_reconst_X - val_gnd_X).^2; mse = sum(dummy(:))/size(val_gnd_X,2); fprintf('folder %d/%d: validation errors mse=%f\n', ... i, num_folds, mse); cv_mse = cv_mse + mse; end cv_mse = cv_mse/num_folds; Mse(find(new_dim==New_Dim_Range)) = cv_mse; fprintf('new_dim = %d: mse = %f\n', new_dim, cv_mse);end% take the best dimension%--------------------------------------------------[dummy,inx] = min(Mse);fprintf('\nMin(mse) = %f, dim = %f\n', ... Mse(inx), New_Dim_Range(inx) );% compute PCA with tbe best dimesion and all training data%----------------------------------------------------------fprintf('Computing optimal Kernel PCA...');lpca_model = pca( trn.X, New_Dim_Range(inx) );fprintf('done.\n');if isempty(output_data_file), figure; hold on; xlabel('dim'); ylabel('mse'); plot(New_Dim_Range,Mse);else save(output_data_file,'New_Dim_Range',... 'Mse','num_folds','input_data_file',... 'output_data_file','lpca_model');end% plot denosing in 2D case only%-------------------------------------if Dim == 2 & isempty(output_data_file), X = pcarec(tst.X, lin_model ); mse = sum(sum((X-tst.gnd_X).^2 )); fprintf('\ntest mse=%f\n', mse); figure; hold on; h0=ppatterns(tst.gnd_X,'r+'); h1=ppatterns(tst.X,'gx'); h2=ppatterns(X,'bo'); legend([h0 h1 h2],'Ground truth','Noisy','Reconst');end% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -