📄 train_kpca_denois.m
字号:
% TRAIN_KPCA_DENOIS Training of kernel PCA model for image denoising. %% Description:% The kernel PCA model is trained to describe an input% class of images corrupted by noise [Mika99b]. The training % data contains images corrupted by noise and corresponding % ground truth. The free paramaters of the kernel PCA% are tuned by cross-validation. The objective function % is a sum of squared differences between ground truth % images and reconstructed images. The greedy KPCA algorithm % is used to train the kernel PCA model.%% See also% GREEDYKPCA, KPCAREC, KPCA.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 07-jun-2004, VF% 06-jun-2004, VF% 17-mar-2004, VF% Setting% -------------------------------------options.ker = 'rbf'; % kerneloptions.m = 500; % # of basis vectorsoptions.p = 10; % deth of search for the best basis vectoroptions.verb = 1;% # folds for cross-validation; % num_folds = 1 means 50/50 - training/testing partnum_folds = 1; % algorithm to compute kernel PCA%KPCA_Algo = 'kpca';KPCA_Algo = 'greedykpca';% parameters to be evaluated by cross-validation:%New_Dim_Range = [50 100 200 300]; % usps%Arg_Range = [3.5 4 5 6 7 8]; % uspsNew_Dim_Range = [1 2]; % noisy_circleArg_Range = [0.5 1 2 3]; % noisy_circle% input/output filesinput_data_file = 'noisy_circle';output_data_file = [];%input_data_file = '/home.dokt/xfrancv/data/usps/usps_noisy';%output_data_file = 'USPSModelGreedyKPCA';% Loads training and testing data.% -------------------------------------load(input_data_file,'trn','tst');[dim,num_data] = size(trn.X);% Data partitioning for cross-validation[itrn,itst] = crossval(num_data,num_folds);% Tuning kernel PCA model% -------------------------------------Mse = [];for arg = Arg_Range, for new_dim = New_Dim_Range, fprintf('\nnew_dim = %d, arg = %f\n', new_dim, arg); cv_mse = 0; for i=1:num_folds, fprintf('\n'); % training and validation part of data trn_X = trn.gnd_X(:,itrn{i}); val_gnd_X = trn.gnd_X(:,itst{i}); val_corr_X = trn.X(:,itst{i}); fprintf('Computing Kernel PCA...'); options.arg = arg; options.new_dim = new_dim; kpca_model = feval( KPCA_Algo, trn_X, options); fprintf('done.\n'); % data restoration val_reconst_X = kpcarec(val_corr_X, kpca_model); % compute error dummy = (val_reconst_X - val_gnd_X).^2; mse = sum(dummy(:))/size(val_gnd_X,2); fprintf('folder %d/%d: validation errors mse=%f\n', ... i, num_folds, mse); cv_mse = cv_mse + mse; end % compute cross-validation error cv_mse = cv_mse/num_folds; Mse(find(new_dim==New_Dim_Range),find(arg==Arg_Range)) = cv_mse; fprintf('Kernel arg = %f: mse = %f\n', arg, cv_mse); endend% take the best parameters%----------------------------------------------[inx1,inx2] = find(Mse==min(Mse(:)));fprintf('\nMin(mse) = %f, dim = %f, arg = %f\n', ... Mse(inx1,inx2), New_Dim_Range(inx1), Arg_Range(inx2) );% compute kernel PCA model with best parameters% using all training data%---------------------------------------------fprintf('Computing optimal Kernel PCA...');options.arg = Arg_Range(inx2);options.new_dim = New_Dim_Range(inx1);kpca_model = feval( KPCA_Algo, trn.X, options);fprintf('done.\n');if isempty(output_data_file), % plot results of tuning figure; hold on; xlabel('\sigma'); ylabel('mse'); h = []; clear Str; for i=1:length(New_Dim_Range), h = [h, plot(Arg_Range, Mse(i,:),marker_color(i) )]; Str{i} = sprintf('dim = %d', New_Dim_Range(i)); end legend(h,Str);else % save model to file save(output_data_file,'Arg_Range','New_Dim_Range',... 'options','Mse','num_folds','input_data_file',... 'output_data_file','KPCA_Algo','kpca_model');end% plot denosing in 2D case only%-------------------------------------if dim == 2 & isempty(output_data_file), X = kpcarec(tst.X,kpca_model); mse = sum(sum((X-tst.gnd_X).^2 )); fprintf('\ntest mse=%f\n', mse); figure; hold on; h0=ppatterns(tst.gnd_X,'r+'); h1=ppatterns(tst.X,'gx'); h2=ppatterns(X,'bo'); legend([h0 h1 h2],'Ground truth','Noisy','Reconst');end% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -