📄 greedykpca.m
字号:
function [model,Z]=greedykpca(X,options)% GREEDYKPCA Greedy Kernel Principal Component Analysis.%% Synopsis:% model = greedykpca(X)% model = greedykpca(X,options)%% Description:% This function implements a greedy kernel PCA algorithm. % The input data X are first approximated by GREEDYKPCA in the % feature space and second the ordinary PCA is applyed on the % approximated data. This algorithm has the same objective function % as the ordinary Kernel PCA but, in addition, the number of data in % the resulting kernel expansion is limited. %% For more info refer to V.Franc: Optimization Algorithms for Kernel % Methods. Research report. CTU-CMP-2005-22. CTU FEL Prague. 2005.% ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-PhD.pdf .% % Input:% X [dim x num_data] Input column vectors.% % options [struct] Control parameters:% .ker [string] Kernel identifier. See 'help kernel' for more info.% .arg [1 x narg] Kernel argument.% .m [1x1] Maximal number of base vectors (Default m=0.25*num_data).% .p [1x1] Depth of search for the best basis vector (p=m).% .mserr [1x1] Desired mean squared reconstruction errors of approximation.% .maxerr [1x1] Desired maximal reconstruction error of approximation.% See 'help greedyappx' for more info about the stopping conditions.% .verb [1x1] If 1 then some info is displayed (default 0).% % Output:% model [struct] Kernel projection:% .Alpha [nsv x new_dim] Multipliers defining kernel projection.% .b [new_dim x 1] Bias the kernel projection.% .sv.X [dim x num_data] Seleted subset of the training vectors..% .nsv [1x1] Number of basis vectors.% .kercnt [1x1] Number of kernel evaluations.% .MaxErr [1 x nsv] Maximal reconstruction error for corresponding% number of base vectors.% .MsErr [1 x nsv] Mean square reconstruction error for corresponding% number of base vectors.% % Example:% X = gencircledata([1;1],5,250,1);% model = greedykpca(X,struct('ker','rbf','arg',4,'new_dim',2));% X_rec = kpcarec(X,model); % figure; % ppatterns(X); ppatterns(X_rec,'+r');% ppatterns(model.sv.X,'ob',12);%% See also % KERNELPROJ, KPCA, GREEDYAPPX.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 09-sep-2005, VF% 19-feb-2005, VF% 10-jun-2004, VF% 05-may-2004, VF% 14-mar-2004, VFstart_time = cputime;[dim,num_data]=size(X);% process input arguments%------------------------------------if nargin < 2, options = []; else options=c2s(options); endif ~isfield(options,'ker'), options.ker = 'linear'; endif ~isfield(options,'arg'), options.arg = 1; endif ~isfield(options,'m'), options.m = fix(0.25*num_data); endif ~isfield(options,'p'), options.p = options.m; endif ~isfield(options,'maxerr'), options.maxerr = 1e-6; endif ~isfield(options,'mserr'), options.mserr = 1e-6; endif ~isfield(options,'verb'), options.verb = 0; end% greedy algorithm to select subset of training data%-------------------------------------------------------[inx,Alpha,Z,kercnt,MsErr,MaxErr] = ... greedyappx(X,options.ker,options.arg,... options.m,options.p,options.mserr,options.maxerr,options.verb); % apply ordinary PCA%------------------------------mu = sum(Z,2)/num_data;Z=Z-mu*ones(1,num_data);S = Z*Z';[U,D,V]=svd(S);model.eigval=diag(D);sum_eig = triu(ones(size(Z,1),size(Z,1)),1)*model.eigval;model.MsErr = MsErr(end)+sum_eig/num_data;options.new_dim = min([options.new_dim,size(Z,1)]);V = V(:,1:options.new_dim);% fill up the output model%-------------------------------------model.Alpha = Alpha'*V;model.nsv = length(inx); model.b = -V'*mu;model.sv.X= X(:,inx);model.sv.inx = inx;model.kercnt = kercnt;model.GreedyMaxErr = MaxErr;model.GreedyMsErr = MsErr;model.options = options;model.cputime = cputime - start_time;model.fun = 'kernelproj';return;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -