📄 greedykls.m
字号:
function [model,Z]=greedykpca(X,y,options)% GREEDYKLS Greedy Regularized Kernel Least Squares.%% Synopsis:% model = greedykls(X)% model = greedykls(X,options)%% Description:% This function approximates input vectors X in the feature% space using GREEDYKPCA. Then the regularized least squares% are applied on the approximated data. %% See help of KLS for more info about regularize least squares.% See help of GREEDYKPCA for more info on approximation of data% in the feature space.% % Input:% X [dim x num_data] Input column vectors.% y [num_data x 1] Output values.% % options [struct] Control parameters:% .ker [string] Kernel identifier. See HELP KERNEL for more info.% .arg [1 x narg] Kernel argument.% .m [1x1] Maximal number of base vectors (Default m=0.25*num_data).% .p [1x1] Depth of search for the best basis vector (Default p=m).% .mserr [1x1] Desired mean squared reconstruction errors of approximation.% .maxerr [1x1] Desired maximal reconstruction error of approximation.% See 'help greedyappx' for more info about the stopping conditions.% .verb [1x1] If 1 then some info is displayed (default 0).% % Output:% model [struct] Kernel projection:% .Alpha [nsv x new_dim] Multipliers defining kernel projection.% .sv.X [dim x num_data] Selected subset of the training vectors.% .nsv [1x1] Number of basis vectors.% .kercnt [1x1] Number of kernel evaluations.% .MaxErr [1 x nsv] Maximal reconstruction error for corresponding% number of base vectors.% .MsErr [1 x nsv] Mean square reconstruction error for corresponding% number of base vectors.% % Example:% x = [0:0.05:2*pi]; y = sin(x) + 0.1*randn(size(x));% model = greedykls(x,y(:),struct('ker','rbf','arg',1,'lambda',0.001));% y_est = kernelproj(x,model);% figure; hold on;% plot(x,y,'+k'); plot(x,y_est,'b'); % plot(x,sin(x),'r'); plot(x(model.sv.inx),y(model.sv.inx),'ob');%% See also % KERNELPROJ, KPCA, GREEDYKPCA.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2005, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 01-mar-2005, VF% 22-feb-2005, VFstart_time = cputime;[dim,num_data]=size(X);% process input arguments%------------------------------------if nargin < 2, options = []; else options=c2s(options); endif ~isfield(options,'ker'), options.ker = 'linear'; endif ~isfield(options,'arg'), options.arg = 1; endif ~isfield(options,'m'), options.m = fix(0.25*num_data); endif ~isfield(options,'p'), options.p = options.m; endif ~isfield(options,'maxerr'), options.maxerr = 1e-6; endif ~isfield(options,'mserr'), options.mserr = 1e-6; end
if ~isfield(options,'verb'), options.verb = 0; endif ~isfield(options,'lambda'), options.lambda = 0.001; end% greedy algorithm to select subset of training data%-------------------------------------------------------[inx,Alpha,Z,kercnt,MsErr,MaxErr] = ... greedyappx(X,options.ker,options.arg,... options.m,options.p,options.mserr,options.maxerr,options.verb); % apply ordinary linear least squares%------------------------------w = inv( Z*Z' + options.lambda*num_data*eye(size(Z,1))) * Z*y;% fill up the output model%-------------------------------------model.Alpha = Alpha'*w;model.nsv = length(Alpha); model.b = 0;model.sv.X= X(:,inx);model.sv.inx = inx;model.kercnt = kercnt;model.GreedyMaxErr = MaxErr;model.GreedyMsErr = MsErr;model.options = options;model.cputime = cputime - start_time;model.fun = 'kernelproj';return;% EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -