⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmmsamp.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">GMMSAMP</b><td valign="baseline" align="right" class="function"><a href="../probab/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table>  <p><b>Generates sample from Gaussian mixture model.
</b></p>  <hr><div class='code'><code><span class=help>&nbsp;
</span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;data&nbsp;=&nbsp;gmmsamp(model,num_data)
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;generates&nbsp;num_data&nbsp;samples&nbsp;from&nbsp;a&nbsp;Gaussian&nbsp;
</span><br><span class=help>&nbsp;&nbsp;mixture&nbsp;given&nbsp;by&nbsp;structure&nbsp;model.&nbsp;It&nbsp;returnes&nbsp;samples&nbsp;X&nbsp;
</span><br><span class=help>&nbsp;&nbsp;and&nbsp;a&nbsp;vector&nbsp;y&nbsp;of&nbsp;Gaussian&nbsp;component&nbsp;responsible&nbsp;for&nbsp;
</span><br><span class=help>&nbsp;&nbsp;generating&nbsp;corresponding&nbsp;sample.
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;model
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Mean&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Mean&nbsp;vectors.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Cov&nbsp;[dim&nbsp;x&nbsp;dim&nbsp;x&nbsp;ncomp]&nbsp;Covariance&nbsp;matrices.&nbsp;In&nbsp;the&nbsp;case&nbsp;of&nbsp;
</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;univariate&nbsp;mixture&nbsp;(dim=0)&nbsp;the&nbsp;variances&nbsp;can&nbsp;enter&nbsp;
</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;as&nbsp;a&nbsp;vector&nbsp;Cov=[var1&nbsp;var2&nbsp;...&nbsp;var_ncomp].
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Prior&nbsp;[ncomp&nbsp;x&nbsp;1]&nbsp;Weighting&nbsp;coefficients&nbsp;of&nbsp;Gaussians.
</span><br><span class=help>&nbsp;&nbsp;num_data&nbsp;[int]&nbsp;Number&nbsp;of&nbsp;samples.
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;data.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Generated&nbsp;sample&nbsp;data.
</span><br><span class=help>&nbsp;&nbsp;data.y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Identifier&nbsp;of&nbsp;Gaussian&nbsp;which&nbsp;generated&nbsp;
</span><br><span class=help>&nbsp;&nbsp;&nbsp;given&nbsp;vector.
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;struct('Mean',[-2&nbsp;3],'Cov',[1&nbsp;0.5],'Prior',[0.4&nbsp;0.6]);
</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;hold&nbsp;on;&nbsp;
</span><br><span class=help>&nbsp;&nbsp;plot([-4:0.1:5],&nbsp;pdfgmm([-4:0.1:5],model),'r');
</span><br><span class=help>&nbsp;&nbsp;sample&nbsp;=&nbsp;gmmsamp(model,500);
</span><br><span class=help>&nbsp;&nbsp;[Y,X]&nbsp;=&nbsp;hist(sample.X,10);
</span><br><span class=help>&nbsp;&nbsp;bar(X,Y/500);
</span><br><span class=help>
</span><br><span class=help>&nbsp;See&nbsp;also
&nbsp;</span><br><span class=help>&nbsp;&nbsp;PDFGMM,&nbsp;GSAMP.
</span><br><span class=help>
</span><br></code></div>  <hr>  <b>Source:</b> <a href= "../probab/list/gmmsamp.html">gmmsamp.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox
<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a>
<br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>
<br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>
<br>  <p><b class="info_field">Modifications: </b> 
<br> 28-apr-2004, VF
<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -