⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fldqp.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">FLDQP</b><td valign="baseline" align="right" class="function"><a href="../../linear/fisher/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table>  <p><b>Fisher Linear Discriminat using Quadratic Programming.</b></p>  <hr><div class='code'><code><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;fldqp(&nbsp;data&nbsp;)</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;computes&nbsp;the&nbsp;binary&nbsp;linear&nbsp;classifier&nbsp;based</span><br><span class=help>&nbsp;&nbsp;on&nbsp;the&nbsp;Fisher&nbsp;Linear&nbsp;Discriminant&nbsp;(FLD)&nbsp;using&nbsp;the&nbsp;Quadratic</span><br><span class=help>&nbsp;&nbsp;Programming&nbsp;(quadprog)&nbsp;optimization.&nbsp;The&nbsp;inputs&nbsp;are</span><br><span class=help>&nbsp;&nbsp;binary&nbsp;labeled&nbsp;training&nbsp;vectors.&nbsp;The&nbsp;parameter&nbsp;vector&nbsp;W</span><br><span class=help>&nbsp;&nbsp;of&nbsp;the&nbsp;linear&nbsp;classifier</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;q(x)&nbsp;=&nbsp;1&nbsp;&nbsp;for&nbsp;W'*x&nbsp;+&nbsp;b&nbsp;&gt;=&nbsp;0</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;2&nbsp;&nbsp;for&nbsp;W'*x&nbsp;+&nbsp;b&nbsp;&lt;&nbsp;0</span><br><span class=help>&nbsp;&nbsp;</span><br><span class=help>&nbsp;&nbsp;is&nbsp;computed&nbsp;to&nbsp;maximize&nbsp;class&nbsp;separability&nbsp;criterion.</span><br><span class=help>&nbsp;&nbsp;The&nbsp;bias&nbsp;b&nbsp;is&nbsp;determined&nbsp;to&nbsp;lie&nbsp;between&nbsp;means&nbsp;of&nbsp;training</span><br><span class=help>&nbsp;&nbsp;data&nbsp;projected&nbsp;onto&nbsp;direction&nbsp;W.&nbsp;</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;data&nbsp;[struct]&nbsp;Binary&nbsp;labeled&nbsp;training&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Labels&nbsp;(1&nbsp;or&nbsp;2).</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Binary&nbsp;linear&nbsp;classifier:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.W&nbsp;[dim&nbsp;x&nbsp;1]&nbsp;Parameter&nbsp;vector&nbsp;the&nbsp;linear&nbsp;classifier.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.b&nbsp;[1x1]&nbsp;Bias&nbsp;of&nbsp;the&nbsp;linear&nbsp;classifier.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.separab&nbsp;[1x1]&nbsp;Meassure&nbsp;of&nbsp;class&nbsp;separability.</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;trn&nbsp;=&nbsp;load('riply_trn');</span><br><span class=help>&nbsp;&nbsp;tst&nbsp;=&nbsp;load('riply_tst');</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;fldqp(&nbsp;trn&nbsp;);</span><br><span class=help>&nbsp;&nbsp;ypred&nbsp;=&nbsp;linclass(&nbsp;tst.X,&nbsp;model);</span><br><span class=help>&nbsp;&nbsp;cerror(ypred,&nbsp;tst.y)</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;ppatterns(trn);&nbsp;pline(model);</span><br><span class=help></span><br><span class=help>&nbsp;<span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also>&nbsp;&nbsp;<a href = "../../linear/fisher/fld.html" target="mdsbody">FLD</a>,&nbsp;<a href = "../../linear/linclass.html" target="mdsbody">LINCLASS</a>.</span><br><span class=help></span><br></code></div>  <hr>  <b>Source:</b> <a href= "../../linear/fisher/list/fldqp.html">fldqp.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br>  <p><b class="info_field">Modifications: </b> <br> 21-may-2004, VF<br> 1-may-2004, VF<br> 30-apr-2004, VF<br> 24-Feb-2003, VF<br> 1-Feb-2003, VF<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -