📄 ganders.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">GANDERS</b><td valign="baseline" align="right" class="function"><a href="../../linear/anderson/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table> <p><b>Solves the Generalized Anderson's task.</b></p> <hr><div class='code'><code><span class=help></span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> model = ganders( distrib)</span><br><span class=help> model = ganders( distrib, options)</span><br><span class=help> model = ganders( distrib, options, init_model )</span><br><span class=help></span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> This function is an implementation of the general framework </span><br><span class=help> to find the optimal solution of the Generalized Anderson's </span><br><span class=help> task [<a href="../../references.html#SH10" title = "M.I.Schlesinger and V.Hlavac. Ten lectures on statistical and structural pattern recognition. Kluwer Academic Publishers, 2002." >SH10</a>].</span><br><span class=help></span><br><span class=help> The goal of the GAT is find the binary linear classification</span><br><span class=help> rule (g(x)=sgn(W'*x+b) with minimal probability of </span><br><span class=help> misclassification. The conditional probabilities are known to </span><br><span class=help> be Gaussians their paramaters belong to a given set of parameters. </span><br><span class=help> The true parameters are not known. The linear rule which </span><br><span class=help> guarantes the minimimal classification error for the worst </span><br><span class=help> possible case (the worst configuration of Gaussains) is </span><br><span class=help> sought for.</span><br><span class=help> </span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> distrib [struct] Set of binary labeled Gaussians.</span><br><span class=help> .Mean [dim x ncomp] Mean vectors.</span><br><span class=help> .Cov [dim x dim x ncomp] Covariance matrices.</span><br><span class=help> .y [1 x ncomp] Labels of the Gaussians (1 or 2).</span><br><span class=help> </span><br><span class=help> options [struct] Determines stopping conditions:</span><br><span class=help> .tmax [1x1] Maximal number of iterations (default inf).</span><br><span class=help> .eps [1x1] Minimal improvement of the optimized </span><br><span class=help> criterion (default 1e-6).</span><br><span class=help> .mineps_tmax [1x1] Number of iterations of the one-dimensional </span><br><span class=help> numerical search (default 100).</span><br><span class=help></span><br><span class=help> init_model [struct] Initial model:</span><br><span class=help> .W, .b, .t see below.</span><br><span class=help></span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Binary linear classifer:</span><br><span class=help> .W [dim x 1] Normal vector of the found hyperplane W'*x + b = 0.</span><br><span class=help> .b [1x1] Bias of the hyperplane.</span><br><span class=help> </span><br><span class=help> .r [1x1] Mahalanobis distance for the cloasest Gaussian.</span><br><span class=help> .err [1x1] Probability of misclassification.</span><br><span class=help> .t [1x1] Number of iterations.</span><br><span class=help> .exitflag [1x1] 0 ... maximal number of iterations was exceeded.</span><br><span class=help> 1 ... solution was found.</span><br><span class=help> -1 ... solution (with err < 0.5) does not exist.</span><br><span class=help></span><br><span class=help> <span class=help_field>Example:</span></span><br><span class=help> distrib = load('mars');</span><br><span class=help> model = ganders( distrib );</span><br><span class=help> figure; pandr( model, distrib );</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also> <a href = "../../linear/anderson/androrig.html" target="mdsbody">ANDRORIG</a>, <a href = "../../linear/anderson/eanders.html" target="mdsbody">EANDERS</a>, <a href = "../../linear/anderson/ggradandr.html" target="mdsbody">GGRADANDR</a>, <a href = "../../linear/anderson/andrerr.html" target="mdsbody">ANDRERR</a>, <a href = "../../linear/linclass.html" target="mdsbody">LINCLASS</a>.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../../linear/anderson/list/ganders.html">ganders.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 4-may-2004, VF<br> 17-sep-2003, VF<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -