📄 kpcarec.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">KPCAREC</b><td valign="baseline" align="right" class="function"><a href="../../kernels/extraction/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table> <p><b>Reconstructs image after kernel PCA.</b></p> <hr><div class='code'><code><span class=help> </span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> Y = kpcarec(X,model)</span><br><span class=help></span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> Input data X are projected using kernel projection trained</span><br><span class=help> the by Kernel PCA [<a href="../../references.html#Mika99b" title = "" >Mika99b</a>]. The RBF kernel is assumed. This </span><br><span class=help> function computes the preimages Y from the input space </span><br><span class=help> corresponding to the projected data are.</span><br><span class=help></span><br><span class=help> X -> projection to -> preimage -> Y</span><br><span class=help> kernel space problem</span><br><span class=help> by Kernel PCA</span><br><span class=help></span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> X [dim x num_data] Input vectors.</span><br><span class=help> model [struct] Kernel projection with RBF kernel;</span><br><span class=help> see 'help kernelproj'. </span><br><span class=help></span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> Y [dim x num_data] Output data.</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also> </span><br><span class=help><span class=also> <a href = "../../kernels/extraction/kpca.html" target="mdsbody">KPCA</a>, <a href = "../../linear/extraction/pcarec.html" target="mdsbody">PCAREC</a>.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../../kernels/extraction/list/kpcarec.html">kpcarec.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 17-may-2004, VF<br> 22-apr-2004, VF<br> 17-mar-2004, VF, created.<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -