⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gda.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">GDA</b><td valign="baseline" align="right" class="function"><a href="../../kernels/extraction/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table>  <p><b>Generalized Discriminant Analysis.
</b></p>  <hr><div class='code'><code><span class=help>&nbsp;
</span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;gda(data)
</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;gda(data,options)
</span><br><span class=help>&nbsp;
</span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;is&nbsp;implimentation&nbsp;of&nbsp;the&nbsp;Generalized&nbsp;Discriminant
</span><br><span class=help>&nbsp;&nbsp;Analysis&nbsp;(GDA)&nbsp;[<a href="../../references.html#Baudat01" title = "G.Baudat and F.Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10):2385--2404, 2000. citeseer.nj.nec.com/baudat00generalized.html." >Baudat01</a>].&nbsp;The&nbsp;GDA&nbsp;is&nbsp;kernelized&nbsp;version&nbsp;of
</span><br><span class=help>&nbsp;&nbsp;the&nbsp;Linear&nbsp;Discriminant&nbsp;Analysis&nbsp;(LDA).&nbsp;It&nbsp;produce&nbsp;the&nbsp;kernel&nbsp;data
</span><br><span class=help>&nbsp;&nbsp;projection&nbsp;which&nbsp;increases&nbsp;class&nbsp;separability&nbsp;of&nbsp;the&nbsp;projected&nbsp;
</span><br><span class=help>&nbsp;&nbsp;training&nbsp;data.
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;data&nbsp;[struct]&nbsp;Labeled&nbsp;training&nbsp;data:
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;vectors.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Labels&nbsp;(1,2,..,mclass).
</span><br><span class=help>&nbsp;&nbsp;
</span><br><span class=help>&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Defines&nbsp;kernel&nbsp;and&nbsp;a&nbsp;output&nbsp;dimension:
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.ker&nbsp;[string]&nbsp;Kernel&nbsp;identifier&nbsp;(default&nbsp;'linear');&nbsp;
</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;see&nbsp;'help&nbsp;kernel'&nbsp;for&nbsp;more&nbsp;info.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.arg&nbsp;[1&nbsp;x&nbsp;nargs]&nbsp;Kernel&nbsp;arguments&nbsp;(default&nbsp;1).
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.new_dim&nbsp;[1x1]&nbsp;Output&nbsp;dimension&nbsp;(default&nbsp;dim).
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Kernel&nbsp;projection:
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[num_data&nbsp;x&nbsp;new_dim]&nbsp;Multipliers.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.b&nbsp;[new_dim&nbsp;x&nbsp;1]&nbsp;Bias.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.sv.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;data.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.options&nbsp;[struct]&nbsp;Copy&nbsp;of&nbsp;used&nbsp;options.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.rankK&nbsp;[int]&nbsp;Rank&nbsp;of&nbsp;centered&nbsp;kernel&nbsp;matrix.
</span><br><span class=help>&nbsp;&nbsp;&nbsp;.nsv&nbsp;[int]&nbsp;Number&nbsp;of&nbsp;training&nbsp;data.
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;in_data&nbsp;=&nbsp;load('iris');
</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;gda(in_data,struct('ker','rbf','arg',1));
</span><br><span class=help>&nbsp;&nbsp;out_data&nbsp;=&nbsp;kernelproj(&nbsp;in_data,&nbsp;model&nbsp;);
</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;ppatterns(&nbsp;out_data&nbsp;);
</span><br><span class=help>
</span><br><span class=help>&nbsp;<span class=also_field>See also </span><span class=also>
</span><br><span class=help><span class=also>&nbsp;&nbsp;<a href = "../../kernels/kernelproj.html" target="mdsbody">KERNELPROJ</a>,&nbsp;<a href = "../../kernels/extraction/kpca.html" target="mdsbody">KPCA</a>.
</span><br><span class=help>
</span><br></code></div>  <hr>  <b>Source:</b> <a href= "../../kernels/extraction/list/gda.html">gda.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox
<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac
<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a>
<br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>
<br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>
<br>  <p><b class="info_field">Modifications: </b> 
<br> 24-may-2004, VF
<br> 4-may-2004, VF
<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -