📄 knnclass.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>knnclass.m</title><link rel="stylesheet" type="text/css" href="../../m-syntax.css"></head><body><code><span class=defun_kw>function</span> <span class=defun_out>y </span>= <span class=defun_name>knnclass</span>(<span class=defun_in>X,model</span>)<br><span class=h1>% KNNCLASS k-Nearest Neighbours classifier.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Synopsis:</span></span><br><span class=help>% y = knnclass(X,model)</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Description:</span></span><br><span class=help>% The input feature vectors X are classified using the K-NN</span><br><span class=help>% rule defined by the input model.</span><br><span class=help>% </span><br><span class=help>% <span class=help_field>Input:</span></span><br><span class=help>% X [dim x num_data] Data to be classified.</span><br><span class=help>% model [struct] Model of K-NN classfier:</span><br><span class=help>% .X [dim x num_prototypes] Prototypes.</span><br><span class=help>% .y [1 x num_prototypes] Labels of prototypes.</span><br><span class=help>% .K [1x1] Number of used nearest-neighbours.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Output:</span></span><br><span class=help>% y [1 x num_data] Classified labels of testing data.</span><br><span class=help>%</span><br><span class=help>% <span class=help_field>Example:</span></span><br><span class=help>% trn = load('riply_trn');</span><br><span class=help>% tst = load('riply_tst');</span><br><span class=help>% ypred = knnclass(tst.X,knnrule(trn,5));</span><br><span class=help>% cerror( ypred, tst.y )</span><br><span class=help>%</span><br><span class=help>% See also </span><br><span class=help>% KNNRULE.</span><br><span class=help>%</span><br><hr><span class=help1>% <span class=help1_field>(c)</span> Statistical Pattern Recognition Toolbox, (C) 1999-2003,</span><br><span class=help1>% Written by Vojtech Franc and Vaclav Hlavac,</span><br><span class=help1>% <a href="http://www.cvut.cz">Czech Technical University Prague</a>,</span><br><span class=help1>% <a href="http://www.feld.cvut.cz">Faculty of Electrical engineering</a>,</span><br><span class=help1>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a></span><br><br><span class=help1>% <span class=help1_field>Modifications:</span></span><br><span class=help1>% 19-may-2003, VF</span><br><span class=help1>% 18-sep-2002, V.Franc</span><br><br><hr>X=c2s(X);<br>model=c2s(model);<br><br><span class=keyword>if</span> ~isfield(model,<span class=quotes>'K'</span>), model.K=1; <span class=keyword>end</span>;<br><br>y = knnclass_mex(X,model.X,model.y, model.K);<br><br><span class=jump>return</span>; <br><span class=comment>% EOF</span><br><br></code>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -