📄 weaklearner.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">WEAKLEARNER</b><td valign="baseline" align="right" class="function"><a href="../misc/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table> <p><b>Produce classifier thresholding single feature.</b></p> <hr><div class='code'><code><span class=help></span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> model = weaklearner(data)</span><br><span class=help></span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> This function produce a weak binary classifier which assigns</span><br><span class=help> input vector x to classes [1,2] based on thresholding a single </span><br><span class=help> feature. The output is a model which defines the threshold </span><br><span class=help> and feature index such that the weighted error is minimized.</span><br><span class=help> This weak learner can be used with the AdaBoost classifier</span><br><span class=help> (see 'help adaboost') as a feature selection method.</span><br><span class=help> </span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> data [struct] Training data:</span><br><span class=help> .X [dim x num_data] Training vectors.</span><br><span class=help> .y [1 x num_data] Binary labels (1 or 2).</span><br><span class=help> .D [1 x num_data] Weights of training vectors (optional).</span><br><span class=help> If not given then D is set to be uniform distribution.</span><br><span class=help> </span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Binary linear classifier:</span><br><span class=help> .W [dim x 1] Normal vector of hyperplane.</span><br><span class=help> .b [1x1] Bias of the hyperplane.</span><br><span class=help> .fun = 'linclass'.</span><br><span class=help></span><br><span class=help> <span class=help_field>Example:</span></span><br><span class=help> help adaboost</span><br><span class=help></span><br><span class=help> See also: </span><br><span class=help> ADABOOST, ADACLASS.</span><br><span class=help> </span><br></code></div> <hr> <b>Source:</b> <a href= "../misc/list/weaklearner.html">weaklearner.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2004, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 25-aug-2004, VF<br> 11-aug-2004, VF<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -