📄 smo.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">SMO</b><td valign="baseline" align="right" class="function"><a href="../svm/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table> <p><b>Sequential Minimal Optimization for binary SVM with L1-soft margin.</b></p> <hr><div class='code'><code><span class=help></span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> model = smo( data )</span><br><span class=help> model = smo( data, options )</span><br><span class=help> model = smo( data, options, init_model)</span><br><span class=help></span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> This function is implementation of the Sequential Minimal </span><br><span class=help> Optimizer (SMO) [<a href="../references.html#Platt98" title = "J.C.Platt. Sequential minimal optimizer: A fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research, Redmond, 1998. http://www.research.microsoft.com/~jplatt/smo.html." >Platt98</a>] to train the binary Support Vector </span><br><span class=help> Machines Classifier with L1-soft margin.</span><br><span class=help> </span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> data [struct] Binary labeled training vectors:</span><br><span class=help> .X [dim x num_data] Training vectors.</span><br><span class=help> .y [a x num_data] Labels (1 or 2).</span><br><span class=help></span><br><span class=help> options [struct] Control parameters:</span><br><span class=help> .ker [string] Kernel identifier (default 'linear'); </span><br><span class=help> See 'help kernel'for more info.</span><br><span class=help> .arg [1 x nargs] Kernel argument(s) (default 1).</span><br><span class=help> .C Regularization constant (default C=inf). The constant C can </span><br><span class=help> be given as:</span><br><span class=help> C [1x1] .. for all data.</span><br><span class=help> C [1x2] .. for each class separately C=[C1,C2].</span><br><span class=help> C [1xnum_data] .. for each training vector separately.</span><br><span class=help> .eps [1x1] SMO paramater (default 0.001).</span><br><span class=help> .tol [1x1] Tolerance of KKT-conditions (default 0.001).</span><br><span class=help> </span><br><span class=help> init_model [struct] Specifies initial model:</span><br><span class=help> .Alpha [num_data x 1] Initial model. </span><br><span class=help> .b [1x1] Bias.</span><br><span class=help> If not given then it is set to zero by default.</span><br><span class=help></span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Binary SVM classifier:</span><br><span class=help> .Alpha [nsv x 1] Weights (Lagrangians).</span><br><span class=help> .b [1x1] Bias.</span><br><span class=help> .sv.X [dim x nsv] Support vectors.</span><br><span class=help> .nsv [1x1] Number of Support Vectors.</span><br><span class=help> .kercnt [1x1] Number of kernel evaluations used by SMO.</span><br><span class=help> .trnerr [1x1] Training classification error.</span><br><span class=help> .margin [1x1] Margin of the found classifier.</span><br><span class=help> .cputime [1x1] Used CPU time in seconds.</span><br><span class=help> .options [struct] Copy of used options.</span><br><span class=help></span><br><span class=help> <span class=help_field>Example:</span></span><br><span class=help> trn = load('riply_trn'); </span><br><span class=help> model = smo(trn,struct('ker','rbf','C',10,'arg',1));</span><br><span class=help> figure; ppatterns(trn); psvm(model); </span><br><span class=help> tst = load('riply_tst');</span><br><span class=help> ypred = svmclass( tst.X, model );</span><br><span class=help> cerror( ypred, tst.y )</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also> <a href = "../svm/svmclass.html" target="mdsbody">SVMCLASS</a>, <a href = "../svm/svmlight.html" target="mdsbody">SVMLIGHT</a>, <a href = "../svm/svmquadprog.html" target="mdsbody">SVMQUADPROG</a>.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../svm/list/smo.html">smo.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 23-may-2004, VF<br> 17-September-2001, V. Franc, created<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -