📄 svm1d.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">SVM1D</b><td valign="baseline" align="right" class="function"><a href="../svm/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table> <p><b>Linear SVM for 1-dimensional input data.</b></p> <hr><div class='code'><code><span class=help></span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> model = svm1d( data )</span><br><span class=help> model = svm1d( data, options )</span><br><span class=help></span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> model = svm1d( data ) trains the linear SVM binary</span><br><span class=help> classifier for the 1-dimensional training data.</span><br><span class=help> The optimizer is based on a modification of the </span><br><span class=help> Sequential Minimal Optimizer (SMO) [<a href="../references.html#Platt98" title = "J.C.Platt. Sequential minimal optimizer: A fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research, Redmond, 1998. http://www.research.microsoft.com/~jplatt/smo.html." >Platt98</a>]. </span><br><span class=help> The trainined classfier is defined as</span><br><span class=help> q(x) = 1 if W*x + b >= 0</span><br><span class=help> = 2 if W*x + b < 0</span><br><span class=help></span><br><span class=help> model = svm1d( data, options ) use to set up control</span><br><span class=help> parameters for the SVM and the SMO algorithm.</span><br><span class=help></span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> data [struct] Input 1-dimensional binary labeled training data:</span><br><span class=help> .X [1 x num_data] Training numbers.</span><br><span class=help> .y [1 x num_data] Labels (1 or 2).</span><br><span class=help> </span><br><span class=help> options [struct] Control parameters:</span><br><span class=help> .C [1x1] SVM regularization constant (default C=inf). </span><br><span class=help> .eps [1x1] Tolerance of KKT-conditions (default eps=0.001).</span><br><span class=help> .tol [1x1] Minimal change of variables (default tol=0.001).</span><br><span class=help></span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Found SVM model:</span><br><span class=help> .Alpha [nsv x 1] Weights.</span><br><span class=help> .b [1x1] Bias of decision function.</span><br><span class=help> .sv.X [1 x nsv] Support vectors.</span><br><span class=help> .W [1x1] Explicit value of the normal vector (scalar).</span><br><span class=help></span><br><span class=help> .nsv [1x1] Number of Support Vectors.</span><br><span class=help> .kercnt [1x1] Number of kernel evaluations (multiplications </span><br><span class=help> in this 1-d linear case) used by the SMO.</span><br><span class=help> .trnerr [1x1] Training classification error.</span><br><span class=help> .margin [1x1] Margin of found classifier.</span><br><span class=help> .cputime [1x1] Used CPU time in seconds.</span><br><span class=help> .options [struct] Copy of used options.</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also> <a href = "../svm/smo.html" target="mdsbody">SMO</a>, <a href = "../svm/svmclass.html" target="mdsbody">SVMCLASS</a>, <a href = "../kernels/kfd.html" target="mdsbody">KFD</a>, KFDQP.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../svm/list/svm1d.html">svm1d.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 17-may-2004, VF<br> 14-may-2004, VF<br> 15-july-2003, VF<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -