⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svmlight.html

📁 很好的matlab模式识别工具箱
💻 HTML
字号:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">SVMLIGHT</b><td valign="baseline" align="right" class="function"><a href="../svm/index.html" target="mdsdir"><img border = 0 src="../up.gif"></a></table>  <p><b>Interface to SVM^{light} software.</b></p>  <hr><div class='code'><code><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;svmlight(data)</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;svmlight(data,options)</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;serves&nbsp;as&nbsp;an&nbsp;interface&nbsp;between&nbsp;Matlab&nbsp;</span><br><span class=help>&nbsp;&nbsp;and&nbsp;SVM^{light}&nbsp;(Version:&nbsp;5.00)&nbsp;optimizer&nbsp;which&nbsp;trains&nbsp;</span><br><span class=help>&nbsp;&nbsp;the&nbsp;Support&nbsp;Vector&nbsp;Machines&nbsp;classifier.</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;The&nbsp;executable&nbsp;file&nbsp;'svm_learn'&nbsp;must&nbsp;be&nbsp;in&nbsp;the&nbsp;path.&nbsp;</span><br><span class=help>&nbsp;&nbsp;The&nbsp;SVM^{light}&nbsp;software&nbsp;can&nbsp;be&nbsp;downloaded&nbsp;from:</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;http://svmlight.joachims.org/</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;creates&nbsp;temporary&nbsp;files&nbsp;'tmp_alphaXX.txt',&nbsp;</span><br><span class=help>&nbsp;&nbsp;'tmp_examplesXX.txt',&nbsp;'tmp_modelXX.txt'&nbsp;and&nbsp;'tmp_verbXX.txt'&nbsp;for&nbsp;</span><br><span class=help>&nbsp;&nbsp;comunication&nbsp;with&nbsp;the&nbsp;SVM^{light}&nbsp;software.&nbsp;The&nbsp;XX=datestr(now)</span><br><span class=help>&nbsp;&nbsp;is&nbsp;string&nbsp;consisting&nbsp;of&nbsp;current&nbsp;date&nbsp;and&nbsp;time.</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;data&nbsp;[struct]&nbsp;Labeled&nbsp;binary&nbsp;data:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.X&nbsp;[dim&nbsp;x&nbsp;num_data]&nbsp;Training&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;num_data]&nbsp;Labels&nbsp;of&nbsp;training&nbsp;data&nbsp;(1&nbsp;or&nbsp;2).</span><br><span class=help>&nbsp;&nbsp;</span><br><span class=help>&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Control&nbsp;parameters:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.ker&nbsp;[string]&nbsp;Kernel&nbsp;identifier:&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'linear'&nbsp;(default),'rbf'&nbsp;and&nbsp;'poly'.&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;.arg&nbsp;[1x1]&nbsp;Kernel&nbsp;argument&nbsp;(default&nbsp;[]).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.C&nbsp;[1x1]&nbsp;SVM&nbsp;regularization&nbsp;constant&nbsp;(default&nbsp;C=inf).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.j&nbsp;[1x1]&nbsp;Cost-factor,&nbsp;by&nbsp;which&nbsp;training&nbsp;errors&nbsp;on&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;positive&nbsp;examples&nbsp;outweight&nbsp;errors&nbsp;on&nbsp;negative&nbsp;examples&nbsp;(default&nbsp;1).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.eps&nbsp;[1x1]&nbsp;Tolerance&nbsp;of&nbsp;KKT-conditions&nbsp;(default&nbsp;eps=0.001).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.keep_files&nbsp;[1x1]&nbsp;If&nbsp;==1&nbsp;then&nbsp;keeps&nbsp;temporary&nbsp;files&nbsp;otherwise</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;erase&nbsp;them.</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Binary&nbsp;SVM&nbsp;classifier:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Alpha&nbsp;[nsv&nbsp;x&nbsp;1]&nbsp;Weights&nbsp;of&nbsp;support&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.b&nbsp;[1x1]&nbsp;Bias&nbsp;of&nbsp;decision&nbsp;function.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.sv.X&nbsp;[dim&nbsp;x&nbsp;nsv]&nbsp;Support&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.sv.inx&nbsp;[1&nbsp;x&nbsp;nsv]&nbsp;Indices&nbsp;of&nbsp;SVs&nbsp;(model.sv.X&nbsp;=&nbsp;data.X(:,inx)).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.nsv&nbsp;[int]&nbsp;Number&nbsp;of&nbsp;Support&nbsp;Vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.kercnt&nbsp;[int]&nbsp;Number&nbsp;of&nbsp;kernel&nbsp;evaluations&nbsp;used&nbsp;by&nbsp;the&nbsp;SVM^{light}.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.trnerr&nbsp;[real]&nbsp;Classification&nbsp;error&nbsp;on&nbsp;training&nbsp;data.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.margin&nbsp;[real]&nbsp;Margin&nbsp;of&nbsp;found&nbsp;classifier.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.options&nbsp;[struct]&nbsp;Copy&nbsp;of&nbsp;used&nbsp;options.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.cputime&nbsp;[real]&nbsp;Used&nbsp;CPU&nbsp;time&nbsp;in&nbsp;seconds.</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;data=load('riply_trn');&nbsp;&nbsp;</span><br><span class=help>&nbsp;&nbsp;model=svmlight(data,struct('ker','rbf','C',10,'arg',1))</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;ppatterns(data);&nbsp;psvm(model);</span><br><span class=help></span><br><span class=help>&nbsp;<span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also>&nbsp;&nbsp;<a href = "../svm/svmclass.html" target="mdsbody">SVMCLASS</a>,&nbsp;<a href = "../svm/xy2svmlight.html" target="mdsbody">XY2SVMLIGHT</a>.</span><br><span class=help></span><br></code></div>  <hr>  <b>Source:</b> <a href= "../svm/list/svmlight.html">svmlight.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br>  <p><b class="info_field">Modifications: </b> <br> 16-may-2004, VF<br> 15-jan-2004, VF, handling argument of poly kernel repared<br> 10-oct-2003, VF, computation of lin model added<br> 29-aug-2003, VF, seconds are added to the name of temporary files<br> 12-may-2003, VF, 1st 3 lines of verb_file are skiped<br> 31-jan-2003, VF, added option 'j' <br> 28-Jan-2003, VF<br> 20-jan-2003, VF, temporary files are unique and are deleted at the end<br> 14-Jan-2003, VF<br> 26-sep-2002, VF<br> 3-Jun-2002, V.Franc<br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -